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1. INTRODUCTION
The fluid dynamics of impinging jets of vertical takeoff and landing (VTOL)

aircraft 1s of great complexity. The ability to optimize the design of these X
aircraft and to predict their performance requires a good understanding of the g
jet-induced phenomena associated with them. VTOL aircraft have different

operating modes (hovering and transition in and out of ground effect). The .
flow fields associated with these modes of operation are substantially t
different. Many of the complex flow phenomena are poorly understood. The main E
flow regions associated with a hovering VTOL aircraft are shown in Figure 1. !
The impinging jets entrain air, which leads to induced suction pressure on the E
lower surface of the aircraft. When the aircraft is hovering near the ground,

further entrainment is caused by the wall jets, increasing the suckdown force ;
on the aircraft. The wall jets associated with multiple impinging jets collide h:
and form a fountain that impinges on the lower surface of the aircraft. This 3
causes an increase in pressure on the lower surface, resulting in a lift-off

effect that partially offsets the suckdown force on the aircraft.

-~

The majority of the research into VTOL flows to date has been experimental.

- ar

A 1ist of references for the experimental work is given in Reference 1.

However, experimental studies of VTOL flows are extremely cumbersome, and

=t ]

measurements are inaccurate owing to the flow being turbulent, globally

2

unsteady, and three-dimensional. Experimental studies of the jet flows

indicate that the jet is susceptible to instabilities that cause the shear

3 S

layer to roll up into vortex rings. During their spatial evolution, these
rings pair and then merge into larger structures that are initially spatially R:
coherent but eventually break down into turbulence. The characteristics of N
large-scale structures in turbulent flows have been a focus of research due to
their importance in turbulent transport and noise production. There is also
evidence of the presence of large-scale structures in impinging jet flows.

Due to their deterministic nature, these large-scale structures have been
studied both analytically and, more recently, numerically. Only within the

A % _a_ e

past few years have sufficient advances in computer capabilities made it 1

-

»1 feasible to attempt numerical simulation of the three-dimensional viscous VTOL ]
) flow fields. While numerical simulations are not expected to replace N
A "
experimental investigations, they are expected to complement experimental :
efforts in resolving many of the complex problems associated with VIOL flows. ~
]
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3
}a:b Computational efforts for investigating impinging jets were initially
;ﬁﬁ: limited to solving two-dimensional problems. Using an incompressible inviscid
: . rotational flow model, Rubel2 investigated the normal impingement of axi-
.tﬁ: symmetric jets and the oblique impingement of two-dimensional jets upon a flat
EE?S surface. This model was then extended to allow three-dimensional computa-
h?’* tions.3 Kotansky and Bower4 investigated planar turbulent jet impingement by
<) solving the time-averaged Navier—Stokes equations using a one—equation turbu-
‘i}: lence model. In this approach, it was necessary to specify the turbulence

\&E length scale distributions. To avoid this disadvantage, Agarwal and Bower5
é”? replaced the one-equation turbulence model with the two-equation (k-g) turbu-
. lence model., The work of Kotansky and Bower4 was extended to solve the problem
.ﬁ;ﬁ of three-dimensional 1ift jets in ground effect by Bower et 31.6 This work
'«522 was the first attempt to calculate both interacting jets and the subsequent
r?;: fountain formation. Computer limitations restricted the computations to a

K relatively coarse computational mesh and to low Reynolds numbers.

’E?E More recent studies include the unsteady simulations of Childs and Nixon’*8
gk&: and Rizk and Menon.9 In their investigations, Childs and Nixon used the com—
"}i pressible Navier-Stokes equations to investigate fluid/acoustic interactions in
iA ( two different regions of the VIOL flow field. An isolated, single impinging
§:§£E jet was investigated by assuming an axisymmetric configuration, and the upwash
::::: fountain, which results from the collision of two planar wall jets, was studied
§:f§ for three-dimensional flows. The incompressible Navier-Stokes equations were
‘:A used by Rizk and Menon to simulate both planar single impinging jets and an
fn » array of three-dimensional impinging jets. Both the impinging jet and the
:'ﬂ E fountain caused by the collision of the wall jets were modeled in these three-
;:_:: dimensional simulations. The simulations were directed toward studying the
. effect of controlled excitation on the development of large structures in the
:t; impinging jets. The results presented by Rizk and Menon9 are preliminary
h;;g results that were obtained at the early stages of the present investigation.
3,\3 The three-dimensional, time-dependent Navier-Stokes equations are used here
""- to investigate the characteristics of jets impinging on the ground and of the
rj;: fountain generated due to the collision of the wall jets that are formed by
bgié the impinging jets. Both steady-state and unsteady computations are performed.
*:ﬁ‘f In the unsteady computations, the behavior of the jets and the fountain due to
. forcing introduced at the jet exit is investigated. The disturbances introduced
E\*: at the jet exit are axisymmetric, azimuthal, and random disturbances.

oot
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2. TFORMULATION
The problem under investigation here is that of an infinite row of jets
impinging on the ground. This problem contains the essential features of twin
jets impinging on the ground, simulating the hovering configuration. The jets
are assumed to exit from a horizontal plate parallel to the ground. The x-z
plane is assumed to be the plane of the jet axes, with the x-axis in the
horizontal direction and the z-axis in the vertical direction upwards. The
y-axis is normal to the plane of jets. The velocity components in the x-, y-,
2-djrections are u, v, w, respectively. The governing equations and the

boundary conditions used are described below.

2.1 Governing Equations
In turbulent flows, a wide range of length and time scales exist. The

separation between the largest scales of motion and the smallest scales of
motion widens as the Reynolds number increases. For VIOL flows, the numerical
resolution of all relevant scales of motion is impossible. Modeling of some
aspects of the flow is therefore necessary. In the classical approach,

based on Reynold's ideas for solving turbulent flow problems, the Navier-Stokes
equations are averaged. All fluctuations are modeled, and only mean flow
variables are calculated. Only steady—-state solutions are possible. 1In the
VTOL problem, the flow field is usually both unsteady and turbulent.
Furthermore, different flow regions exist in which the scales of motion vary
greatly from one to another, It is, therefore, difficult to resolve all the
relevant scales using the current computing capability. Here, the large-eddy
simulation (LES) approach is followed. In this approach, all scales
resolvable by the grid resolution are computed explicitly using the
time-dependent equations, while the small-scale turbulence structures, which
are nearly universal in character, are modeled by an eddy viscosity
formulation that simulates the energy cascade into the small scales. The use
of the time-dependent equations in this manner provides the ability to
investigate the temporal development of the flow field. A broad range of
problems may, therefore, be investigated, e.g., the unsteady separation in
boundary layers,10 the evolution of large, spatially coherent structures in

jets,11 and the different stability modes in jets.12
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In the large-eddy simulation approach, a flow variable f is decomposed as

follows:

£f=f+f'

where f is the large-scale, resolvable part and f' is the subgrid-scale, unre-

solvable part of the variable f, The large-scale component'f is defined by
[1¢3) -/G(vs_ - x") £(x') dx’ (1)

where G(x - x') 1s a filter function. Applying operation (1) to the

incompressible Ravier-Stokes equation
T 2
q, + V(@) =-Ww+vVg (2)

and to the continuity equation

Veq=0 (3)

leads to the following equations:
q, + V(q q") = =% + v Vg (%)
Veq = 0 (5)

~

where q is the velocity w vector, p is the pressure and v is the kinematic
viscosity. The term q q includes unresolvable variables and therefore is not
explicitly calculated. This term is given by

+3q 7 +q' q +q'q'" . (6)

T
19 -

T

12l
121

The Fourier transform method used by Mansour et al.13 allows the first term

on the right-hand side of Equation (6) to be easily calculated. Otherwise

T) ("N

this term may be written as

12l
10

T T = =T

12t
1ol
10}
12l
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3
. 4
) where the term within parentheses is the Leonard term, Leonard1 shows that
b > )
f;: this term may be expanded in a Taylor series in terms of the resolvable
. variables. The last three terms in Equation (6) are usually modeled in terms
HR of the resolvable variables; however, part of their effects can be captured by
D)
i{ a Taylor series expansion of the resolved variables.15 Here we follow
! 6
?{ Deardorff1 in lumping the Leonard term with the subgrid terms and modeling
[}
) R, where
T - =T
R=dqq -qq .
)
:5 In this case, Equation (4) becomes
R}
[N
- - =T -
q, + V(g q + 0 = -+ vy (8)

of the tensor T are given by

p
where the elements T
o 13

1
Ty ™ Ry ™3 R 84

Do, and

A 1

\ —

o’y - —

- P=p+3 R, -

o

The elements of T, responsible for the energy drain to the subgrid scales,

b are represented by an eddy viscosity model:
o
i Ty T 72 Vs Sy

where the element S1j of the rate—-of-strain tensor S is given by

3 x 1)
) s, =1L+ i
11772 \&, 7 oy

Here

Ry Y b‘-‘”

(u), Uyy Ug) = (u, Vv, W)

2 - N = A,

(xl. Xy x3) = (X, ¥> 2) .

Smagorinsky's17 model for the eddy viscosity, also used by Deardorff, is

PR

given by

-

/2

- e g S o

2 1
Vg = (CIA) (2 Sij sij)

PSS

TR-403/4-87

..........

29 4 ¥
W o.t'u!ﬁ'nfl‘».,l'r



. .
AN
% IO SR XK

where C1 i1s a constant and A is the characteristic length scale of the smallest
resolved eddies. In the present simulations, we use C1 = 0.1 similar to
Deardoff.
The equations governing the resolvable variables are written as
q + Vrla q" - 2v+ v )S] = -7 (9

and
Veq = 0 . (10)

where the bars have been dropped for simplicity. By taking the divergence of
Equation (9), the following equation governing P is obtained:

VP = -Veq -9 (11)

where
Q= Velq qT = 2(v + v )s]

and
V°gt =0

The system of Equations (9) and (11) is equivalent to the original system,
Equations (9) and (10), and is used here in place of it.

2.2 Boundary Conditions
The vector equation (9) is solved subject to the periodicity condition in

the x-direction, thereby simulating an infinite array of jets. The condition

du o
— B —mm = 2

with 3v/3y being determined from the continuity equation, is applied at the
side boundaries of the computational domain parallel to the row of jets. The
computational mesh in the present calculations is not fine enough to resolve
the viscous sublayer. Therefore, it 18 not proper to apply the no-slip con-
dition at the upper and lower boundaries. The solution in the near wall region
is therefore patched to the solution at the first computational mesh point

18

away from the wall through the use of Spalding's™ expression in this region.
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:r The vertical velocity component is specified to be zero at the lower boundary
‘a: and the upper boundary, except at the jet exit where it is specified as a ,
; function of space and time. The other two velocity components are specified =
s to be zero at the jet exit.
{1 Equation (11) is solved subject to the periodicity condition in the
gf x-direction and the following Neumann boundary conditions determined from
Equation (9) at the top and bottom boundaries:
> 3P ;
A — = =ke +
» 3z - (‘lt 9~) (13)
>~
’l
s where k is a unit vector in the vertical direction. Unlike the solid-wall
K] boundaries, the side boundaries of the computational domain, which will also be -
; referred to as outflow boundaries, are not physical boundaries. They are q
s artificial boundaries created to limit the computational domain to a finite
Ef region. The boundary conditions are therefore not known at these boundaries. :

In cases where experimental measurements are available at these boundaries,

it is possible to use them as boundary conditions, However, in general, such

AR

measurements are not available. Without experimental data, it is necessary to
choose a set of boundary conditions at the side boundaries. In general, these

y conditions will create local disturbances near the boundaries. However, since !

the side boundaries are mainly outflow boundaries, it is expected that the

w
-

local disturbances at the boundaries will have a negligible effect on the inner

- &

G computational region of interest, provided reasonable conditions are applied

] and the boundaries are placed far enough away from the jets. A set of

B "approximate” boundary conditions at the side boundaries was chosen for

5 Equation (9) and is given by Equation (12). For the pressure equation, the

& condition q
;-: %ylj =0 (14) :
: :
5 is applied, with two modifications. The modifications are necessary due to the

-4 approximate nature of the conditions applied at the side boundaries. At the

side boundaries there does occur some inflow due to the entrainment caused by

0 ]
-

the impinging jets, the wall jets, and the fountains. However, since the

5
solution outside the computational domain is not known, it is not possible A
to specify the correct velocity distribution at the boundary. The weak ’
N
4
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boundary conditions applied here were found in certain calculations to allow

a continuous, nonphysical buildup in the inflow velocity in certain regions

of the boundary, resulting in numerical instability. To avoid this problen,

a restriction is imposed on the inflow velocity. At boundary points where the
inflow velocity exceeds a certain specified limit, the value of 3P/3y is
modified so that the inflow velocity does not exceed this limit. Secondly, the
existence of a solution to Equation (11) with Neumann boundary conditions

applied at the horizontal and the side boundaries requires that

- | 2
/a av /an ds (15)
v S

where s is the source term appearing on the right-hand side of Equation (11), V
is the volume of the computational domain, S 18 the boundary of the computa-
tional domain, and n is the outward normal to that boundary. Since the value
of 3P/9n 1s specified on the upper and lower boundaries by Equation (13),
condition (15) is satisfied through the proper modification of 3P/3n on the
side boundaries. Assuming that the first modification to the pressure

boundary condition, limiting the inflow velocity, leads to the following
boundary condition along the boundary S:

P .
o g »

in order to satisfy Eq. (15), 3P/3n 18 modified at the side boundaries so that

‘/’9 dv - J{ g ds
\' S

where A is the area of one of the side boundaries.

oP

2.3 Random Initial Conditions

Here we present the rationale behind the model used to generate the random

turbulent field that 1s imposed at the jet exit. We generate a random
turbulent field, subject to particular constraints (to be discussed below) and
impose this field at the jet exit, Numerical simulation of the subsequent
development of the flow field is then carried out. By imposing such a random
field at the jet inflow boundary condition, during the spatial development of
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the jet, the unstable frequencies will amplify in a realistic manner. This
approach is a more accurate way of forcing the jet compared to forcing at a
single frequency. Furthermore, this approach does not require the a priori
identification of the most unstable frequency, and the stability of the jet
flow can be studied in a more general way. Due to the presence of the solid
surfaces, the characteristic unstable frequency may depend on the location of
the ground wall, and identification of the most unstable frequency is quite
difficult. By imposing a random field at the jet exit containing all the
possible frequencies (limited, of course, by the grid resolution), the most
unstable frequency (or mode) may evolve naturally. Such an approach is
expected to give a better understanding of the instability mechanism involved

during the impingment of a jet on a ground plane.

The instantaneous velocity q (g, t) at the jet exit is defined by

(x, t) =q

Sj ~ja(!) + q ‘(x, t), x=(x,y) (16)

where q a and q,' are the ensemble average and the random turbulent jet velocity
at the jet exit, respectively. We define the turbulent field qj'(;, t) at the

jet exit as

W, 0) =o)X & q(k, w el(EEF W) an

1
- Ikl<k lwl<Q ™

In general, the turbulent field i8s three-dimensional. However, this field is
specified at a given z-location and, therefore, the field is assumed to be a
function of x and y only. Here, k = (kx, ky). i{s the wave-number vector and
w is the frequency. Also, K = (Kx’ Ky). i8 the wave-number cutoff and 0 is
the frequency cutoff, which are determined by the grid resolution and computa-
tion time, and ij(g. w) are the Fourier modes of q *(x, t). Equation (17) 1s

assumed to satisfy

E;T =0 (18a)

T S P (18b) ‘
1 -3 ~
”
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Here, the bar indicates ensemble averaging and o(x) is the root-mean-square
value. The random field is then generated such that Equation (18) is satis-
fied. 1In the subsequent formulation, the subscript j is omitted for simpli-
city. On averaging Equation (17), we obtain

T O = o) 2 qlk, o) el EEFE) (19) %
- k, w*~ B
which implies that for Equation (18a) to be satisfied, i'
"
q(k, w) =0 for each (k, w) . (20)
N
Also,
=
".
Q' (x, t) = 02(5) 2: q(k, w ei(E.E + o) 2: q* (L, v) e_i(&'i + Vo) b
- k, w” £ v~ :
P
=R Y Ak, Wity v etk T Brxlu=wtl ), ‘
!sw; Q.V - -
We then choose q(k, w) such that .
a(k, w) q*(&, V) = qk, w) q*(k, w) &k - &, w - V)
— 1
- 13k, W1% 6k - 2 w-W (22) 3

where § is the Dirac delta function and a* 18 the complex conjugate of q.
The delta function is defined as

Lik=g w=v
Sk - 2, w- V) = (23)
O, k¥ 2 wet v

Then, Equation (22) becomes

e, ) = A L i, wll. (24)
1 h
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Note here that, by virtue of this equation, we are assuming that the Fourier
modes q(k, w) are chosen such that there is no correlation between the
variou; ;ave-number and frequency modes, that is, the wave numbers k and 1 are
are uncorrelated. This is a reasonable first approximation.

We now choose

2 lak, ol =1 (25)

k, 0

so that Equation (24) satisfies the requirement given by Equation (18b). Now,
lq(k, @) 12 1s the turbulence kinetic energy present in each (k, w).

Therefore, the total turbulence energy is

2 lq(k, w!? = / E(k, w) dk dw = E(k, w) A Aw (26)
k, w€S ~ k,”wES

where Ak Aw is the volume contained within the surface S. Also E(k, w) 1s the
turbulence kinetic energy spectrum in the (k, w) space. If we assume that
there are N_ cells within the surface S and also assume |a(&, uDIZ is constant

within each cell, then we may write

T 1k, ol =N 13k, wl? (27)
k, w€s ~ - .

On combining Equations (26) and (27), we get

- Ak ')
|q(k w)| N
8

E(k, w) . (28)

The Pourier modes q(k, w) can then be determined provided that the enmergy
spectrum E(k, w) i8 known. It 18 possible to specify the energy spectrum from

experimental data. For example, we may write

E(k, w) = E, (k) E,(w) (29)

where 21(5) (= El(kx’ ky)] 18 the two-dimensional energy spectrum in the wave-

number space and Ez(w) is the one-dimensional energy spectrum in the frequency

TR-403/4-87 11
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space. We may then choose El(E) and Ez(w) from experimental data and normalize

the energy spectrum such that

o [} -]
/ / f E(kx’ ky', w) dkx dky dw=1 . (30)
-—00 -0 -0

Then the Fourier modes a(&, w) would have the following properties:

(1) &(5, w) = 0 for each (k, w) .

(11) E(k, w) is statistically independent of a(l, v) for k¥ 2, w¥ v .

(1i1) l?l(lg, w 1%= AE Awxsl(\s) Ey(w) = F(k, o) . (31)
8
So the Fourier modes q(k, w) are then determined subject to constraints
(1) through (ii1). The m;aes so defined are also chogsen such that Equation (18)
is {mplicitly satisfied. Once these modes are known, the random turbulent field
q(x, t) can be immediately determined by taking a fast Fourier transform by
;i;tue of Equation (17). The steps necessary to determine the random field

can then be summarized as follows:

(1) Choose an energy spectrum E(&, w) from experimental data and
normalize sccording to Equation (30), Also determine K and @, the

wave-number and frequency cutoffs.

(2) Choose an elemental volume (Gx Ky Aw) and determine the number of
cells (Ng) within that volume.

- 2
(3) Use Equation (28) to determine lq(k, w) |~ for each (k, w).
Note that

a0k, wl? = 1307 + 13" = Fig w

where the subscripts R and I denote the real and imaginary parts of 6. 1

We assume

2 _ 12 (2
15 = 1q,1

9
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Then
q* = \/ 3 PG, .

(4) For |kl <K and |wl < @, generate random numbers (R;, R,) such that

= _7' —7
3.1 R, 1

that the random field 1s generated for all q, q = (4, v, W)

(5) For all (k, w), compute the FPourier modes

aC, W = (3, 3;) = (@%,;, P*R,)

%> 9

where ( , ) indicates the real and imaginary parts.

(6) Obtain q(x, t) by taking a fast Fourier transform of qlk, w.

TR-403/4-87 13
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3. METHOD OF SOLUTION

To solve the flow governing equations, we use a staggered computational
mesh.19 This resolves many of the difficulties associated with incompress—
ible Navier-Stokes computations on a regular mesh.20 The main computational
mesh 1s the P-mesh. The pressure P is defined at the nodal points
(x4, Yy z,) = (14, j&y, kiz) of this mesh, where &, ly, 4z are the mesh

spacings in the x—, y—, z~directions, respectively. The u-, v-, w-velocity

components are defined at the nodal points (xi+¥, yj, zk), (xi, yj*%’ zk), (xi,
Yy Zk+5) of the u-, v-, wmeshes, respectively. These meshes are displaced

from the P-mesh by half a mesh spacing in the x-, y-, z—directions,

respectively. The x-, y-, z-momentum equations are discretized at the nodal
points of the u-, v-, w—meshes, respectively, while the discretized Poisson
equation for pressure is obtained at the nodal points of the P-mesh by central
differencing of the discretized momentum equations at the neighboring points.
The pressure gradient terms and the diffusive terms of the momentum equations
are approximated by central differencing. The use of central differencing to ;
approximate the convective terms leads to unphysical oscillatory behavior at
relatively low Reynolds numbers and to divergence of the solution as the
Reynolds number is increased. Classical alternatives of upstream differencing
avoid the problems associated with central differencing by introducing
numerical diffusion terms. However, they often suffer from severe inaccuracies
due to truncation errorsz1 or streamline-to-grid skewness.22 The problems
associated with central differencing and upstream differencin~ of the
convective terms are avoided by using quadratic upstream interpolation for
convective kinematics (QUICK) to approximate the convective terms. The

23

original one—-dimensional QUICK scheme developed by Leonard®~ was extended to

24 A three—-dimensional extension of the

two dimensions by Davis and Moore.
scheme is used here.

While the QUICK scheme is used to discretize all the convective terms of
the momentum equations, only the discretization of the term (uv)x of the
y-momentum equation is presented here., Discretization of the rest of the
convective terms may be obtained in a similar manner. At the mesh node
(xi, yj+k’ zk) (see Figure 2) the convective term (uv)x i8 approximated

by the finite difference expression

u1+knj+¥)k vi""}a.‘l"”‘.‘.k - u1'5;3+§.k Vi"i.3+¥.k (32)
bx
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b3t
b )
R Wi IR L1, g0k 1, 54K
PO and vitk,i+%,k 4 an approximation for v at the point (xj4+%, yj+%, 2zx). It is
::.*: obtained by averaging a truncated Taylor series expansion for v over the cell
' ) side centered at the point (xi+;5, Y+ zy). The Taylor series is taken about
e —_
i
i) the point (xi+%..;5, y, z) if uifi’j"'%’k > 0 or about the neighboring point
1'\ !' -
j‘.ﬂ', (x14+%+%, ¥y, 2z) if uii*i’j"'%:k < 0, Assuming that uith, ith,k 0, set
H al
R
At
o v(xit%, Yy Z) [1 +<2 = + n % + P
AN 2
R0 +1wxa+a+a] 33
a = = = n — T = v(x 3 ¥ y Zy) (33)
2 2 (z x oy az) 1% Tiy Tk
j where
v
AN
a4 a) = -
A
o =2~z .
o k
‘.".-“ i+§ k
A +
B¥ The expression for V — »3+5, is obtained by taking the average
Az
o 2 3
oo i+%, j+%,k 1
() At ’ S
..' v Ay Az v(xii'%-!’j’ Yj+% +n zk + 7) dn dg
B -Az =Ny
e = =2
XN
and approximating the derivatives by central finite differences. Therefore
i ,
*.:: Vifi,j‘“i,k = 2_3;_ gvii%"%,j"'%,k + 14V1i% %:j"'%,k
Ve
i 1+%- +
® - 3y +%-3/2, j+%,k
ik
W
. b o iR IRk i, 343/2,k
o
. 43— - -
% L AR L, 1 a.j+5,k+1) 38
)
-@, n n+l n
_'} For advancing the solution from time t to time t , where t = n A,
", the Poisson equation for pressure
[
.,.
Ko,
o +1 n
= o
235 % V.q q 5
e -~ _ ot (35)
-l Ve At +v At ~
A
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N
g:‘ is first solved to determine the pressure distribution that will allow the
A +
W, continuity equation to be satisfied at time t" 1. In Equation (35)
K +5 3 1 n-1
\ n n n-
) M Q = -i- Q - .2_ Q
1 -
' and V indicates the central finite difference approximation of the operator V.
b +
' For the continuity equation to be satisfied at time t" 1, it is necessary to
B A
i?‘ set the first term on the right—hand side of Equation (35) equal to zero. An
i,& efficient method for the direct solution of the discrete Poisson equation is
:;} used.25 Following the determination of the pressure field, the Adams-
Bashforth scheme is used to calculate the velocity at the new time step.
rt Therefore,
o
. n+l n n+ - nt
o q =q -At(Q %+VP !5)- (36)
b, ~ ~ ~
- The finite difference scheme used here is second-order accurate in both space
2? and time.
{
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gf} 4. RESULTS OF THE SIMULATIONS

;!i The study of impinging jets brings into focus a combination of different

. types of flows that are interrelated in a very complicated manner. For ;

“ls example, an impinging jet flow field 1s a combination of free jet flows, {

yﬁ vortices in the curved shear layer, stagnation point flow and wall jet flow. ‘
N i

During the operation of VTOL aircraft near the ground, this flow field is \

b
5

further complicated by the presence of the fountain due to collision between

X

= T

two wall jets (see Figure 1). Understanding the large-scale motion in such a ;

geometry is essential to determining the characteristics of the flow field

-
P

associated with VTOL aircraft operating near the ground. The approach taken

"
>

A here involves the simulation of forced impinging jets to study the complex :
:3 vortex dynamics that occur when the VTOL aircraft is operating in the vicinity
of the ground plane. ]
The basic configuration considered in this study is that of an infinite §
. row of jets. In the following computations, the distance between the axes of 3
neighboring jets is taken to be equal to 3D, where D is the jet diameter. Two ’
values of H are considered: H = 1.5D and H = 3D, where H is the distance
;‘ between the upper and lower horizontal plates. The side boundaries are
: assumed to be two vertical planes parallel to the plane of jet axes and at a
distance of 3D on either side of it. Periodic boundary conditions are assumed N
. in the x-direction. The periodic boundaries are assumed to be the vertical h
8: planes normal to the row of jets and positioned at the mid-distance between

two neighboring jets.
. Computations were performed in which a single period in the x-direction )

%

includes a single jet and two neighboring jets. Symmetry conditions are
applied whenever possible to reduce the cost of computation. The top view of

F—E—r—r—

-

PN

the computational domain for computing two neighboring jets is shown in Figure

3. A fraction of this domain is required for several of the computations that

e -

B e 2 5 T
- VNPT A O

follow. Figure 3 will be referred to below to define the different

-

computational domains used in the calculations.
In the following computations, a basic axisymmetric velocity profile given

by

P AL

'6
r
wo = -11 -(Fj) w (37)

‘ TR-403/4-87 17 :

-------

-y

y

TR SRR L ety s T 193 W0
Y gy « ;

* A e ‘\ a ‘\ < |..'.‘..4‘.':S'l.\:'.h GO MK nﬁl‘ (2 ’&‘..l'..’a ."0 “§e¥,

o) A v

T T T G T, TS T > > 0 e
¥ T ¥ 8 k ;. Y b ” Ny "
e o o e SO T R T T co Vol




-' -.' -.‘ .

5$$J3

is assumed at the jet exit, where r, is the jet exit radius, r is the radial

coordinate, and W is the axial velogity magnitude at the jet exit. In the
following discussion, all velocities are normalized by a reference velocity U,
U = W. The velocity components in the x- and y-directions are assumed to be
zero at the jet exit. The basic steady state solution is perturbed by adding a
time-dependent perturbation velocity [0, 0, w'(x,y,t)] at the jet exit. In the
following computations, the jet diameter D and the jet axial velocity W (= U)
are specified to be 1.0. A Reynolds number of 1000 is assumed, based on the
jet diameter and the unperturbed exit velocity at the jet axis. The time step
At used in the computations is given by At = 0.3 min (Ax, Ay, Az) where Ax, Ay
and Az are the uniform mesh spacings in the three coordinate directions. The
Cartesian coordinate system is chosen so that x = Yy = (0 in Figure 3, while

z = 0 1s the ground plane.

In all the following computations, a steady-state solution is obtained
initially and is used as an initial solution for the simulations in which the
jet is disturbed. The initial solution for the steady-state computations was
that of a flow at rest. The velocity profile given by Equation (37) was
gradually introduced at the jet exit. The velocity was linearly increased in
time from zero to the velocity indicated by Equation (37) within 10 time
steps. The computation was then continued in time until all initial transients
disappear and a steady-state solution is obtained.

To reduce the cost of obtaining the steady-state solutions, they were
obtained initially on a coarse computational mesh. This coarse-mesh solution
is then interpolated onto the fine mesh and used as an initial solution for the
fine mesh computation. These computations assume symmetry conditions in both
the x- and y-directions. They are therefore obtained on the computational

domain bounded by the planes x = x = xF, y = Y5 and y = y2, which composes

» X
one-eighth of the domain depicted :n Figure 3. The solution is then reflected
as many times as necessary to obtain the steady-state solution in the
computational domain of interest.

The computations were performed on the NASA Ames Cray X-MP/48 computer.
So that computer memory capabilities are not exceeded, computational data were
buffered in and out of core using the Solid State Storage Device (SSD), which
functions as a very high-speed disk with transfer rates of 1000 MB/second.
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Since the present computations are incompressille computations, it was
necessary to keep the pressure array in core. However, all other large arrays
were divided into eight horizontal slabs that were buffered in and out of core.

The present computer code has been optimized for vector operations
wherever possible and performs at a computational speed of 1.45 x ].0-5 cpu
seconds per time step per grid point. The actual computational time for a
simulation depends upon the grid used and the total time period of forcing
being simulated.

4.1 Steady Impinging Jets

Steady-state solutions for the impinging jets for both a short height case
(H = 1.5D) and a longer height case (H = 3D) were first obtained. For these
steady-state calculations, the planes x = X, X = Xg, and y = y; are assumed
to be planes of symmetry. This reduces the computational time required to
obtain the steady-state flow field. The computational domains for the short
and long height cases were, respectively, 1.5Dx3Dx1.5D and 1.5Dx3Dx3D. The

computational domain is bounded by the planes x = X and x = o in the
x-direction and by the planes y = A and y = Yo in the y-direction (see
Figure 3). A 32x64x32 grid was employed for all the steady-state calculations.
The computations are begun with the fluid in the domain initially at rest.
At time zero, a velocity jet profile [Equation (37)] 1s introduced at the
circular jet exit plane on the top wall to simulate the incoming jet. The Jet
shear layer sheds a vortex ring, often called the starting vortex, that
impinges on the ground plane and then propagates along the surface. The
propagation of this starting vortex ring was discussed in Rizk and Menon.26
This vortex ring eventually leaves the computational domain. The flow field
reaches a steady-state situation when there are no further changes in the flow
field. Figure 4 shows the three—dimensional view of the total vorticity
magnitude, defined as |9| = \/;E: i1 =1,3, in a view that shows the jet and

the fountain region for the H = 1.5D case. This figure shows the three-

~§

dimensional perspective of the vorticity surface at the level |gl = 1.75, which
implies that all vorticity levels higher than this value are enclosed inside
this surface. Visualization at a lower vorticity level would show more

regions of vorticity but would hide the regions of higher vortical motion that
are of major interest. This figure shows the characteristic shear flow at

steady state. The vorticity surface in the impinging jet shear layer is

a TSRS R
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- smooth in general, indicating a uniform shear flow that grows as the jet

-
PR )

- spreads before impacting on the ground. The vorticity in the fountain 1is also
smooth, and the recirculation of the flow due to the impact and spreading of
the fountain on the top wall is also visible. There is an indication that
this recirculation of the flow causes the fluid to be entrained into the jet,

¥ e e ¥

thereby contributing to the gpreading of the jet. This is a consequence of

v 2 1% a2

the presence of the second jet in the x-direction. The close proximity of the
N top wall to the ground causes the fountain's spreading on the top wall to be
‘3 quite distinct.

» Figure 5a shows the steady-state v-velocity profile in the x = 0 plane, >

normal to the plane of jets, as a function of z at various y-locations. In

this figure, and all subsequent figures showing velocity profiles, the

abscissa shows the scale for the velocity. The impinging jet and the fountain r

2L

regions are excluded from this figure due to the rapid changes in the flow
direction in those regions. This figure shows the wall jet propagating
towards the outflow. The wall jet is strong and narrow in the initial regions

where the wall shear layer thickness is small and the impinging jet shear

PP NNER ™

layer is accelerating due to the curvature effects. Further downstream, the

A

wall boundary layer grows and the jet peak velocity decreases as the flow
oY spreads on the ground and weakens. Some regions of reverse flow are seen R
around y = 2,.25D, indicating that there 18 some entrainment from the outflow

region near the top wall. The u-velocity profile in the y = 0 plane, which

YO

coincides with the plane of the jet axes, 1s shown in Figure 5b as a function -
of z at various x-locations. The wall jet on the ground grows towards the \

fountain and then slows down as the collision zone is approached. There is a

«.':'.‘.'-.

reverse wall jet on the top wall due to the spreading and recirculation of the

« -

fluid in the fountain. This reverse shear flow spreads over the top wall and

weakens as the impinging jet region 18 approached. There is evidence that

some of the fluid in the recirculation flow {8 entrained into the impinging

jet, thereby modifying the spreading of the jet.

L] Figure 6a shows the steady-state pressure in the y-z plane at x = 0 as a

function of §, where S is the distance from the jet exit plane (see inset). !
b . The pressure rises to its stagnation value at the impingement point (I) on the

b ground and then decreases towards the outflow (0). Pressure is nearly uniform

as the outflow is approached. The slight increase in the pressure towards the

-
-

outflow is probably related to the slowing down of the vortex ring as it '
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propagates to the outflow. On the outflow boundary, the pressure is not
uniform but shows a slight decrease as the top wall is approached (W). On the
top wall, the pressure is uniform. The pressure variation in the x-z plane at
y = 0 as a function of S (see inset) is shown in Figure 6b. The pressure
decreases from the maximum at the impingement point (I) as the fountain is
approached and then increases in the wall jet collision zone. The rise in
pressure at the fountain axis (F) is lower than the stagnation pressure at the
jet impingement point. Tne peak pressure in the wall jet collision zone
occurs slightly above the ground, after which it starts to decrease as the
fountain spreads. The pressure then again increases to another local maximum
at the location where the fountain impinges on the top wall (W°). This local
maximum is about the same as the peak near the wall jet collision.

The growth of the impinging jet is shown in Figure 7a in terms of the jet

half velocity width, ng/D, in the x-z plane at y = 0 as a function of z/D.
This jet width is calculated based on the location at which the velocity is

half the local maximum velocity. The jet width is nearly constant until about
z = 0,5D, where it starts to spread rapidly as the shear layer curves outwards
near the impingement region. The growth of the fountain due to wall jet
collisions is shown in Figure 7b, which indicates a slow spreading of the
fountain as the top wall is approached., This is partly due to the presence of
the jet exit plane close to the ground, resulting in a smaller distance for the
fountain to have for spreading. The calculated fountain width for z < 0.3D
may not be reliable due to the rapid changes in the flow direction in the wall
jet collision zone.

Figure 7c shows the variation of the centerline velocity, wc/U, as a
function of distance from the jet exit plane to the ground, z/D. The velocity
i8 gcaled by the jet-to-ground distance, H/D. The jet is nearly uniform until
about z = 0,5H, after which it rapidly slows down as the ground is approached.
As it glows, the jet also spreads outwards causing the observed jet spreading.

Steady-state simulations for the H = 3D case were also performed.

Figure 8a shows the three-dimensional perspective of the vorticity surface for
the impinging jet flow in this case. The vorticity surface is at the same
absolute vorticity level as in Figure 4. Comparison with Figure 4 indicates
that increasing the jet-to-ground distance increases the dissipation and

diffusion of the vorticity and weakens the shear regions in the flow field.
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At the level shown, there is ineignificant vorticity on the top wall, unlike
the H = 1.5D case, and the reverse flow on the top wall is also indistinct.
Visualization of the vorticity at a lower level would show that there is
vorticity in those regions but at a much lower level. Figure Bb shows the
view of the outflow for the H = 3D case. The steady-state vorticity in the
shear layer of the jet is smooth, and the shear region in the wall region is
also smooth. The fountain is weaker, however, than for the H = 1.5D case.
This would reduce the pressure increase on the top wall, thereby reducing the
1liftoff effect of the fountain. In general, the flow field is similar to the
H = 1.5D case; however, due to the increase in the jet-to-ground distance,
there are only local regions of high vorticity present in the domain.

Figure 9a shows the steady-state velocity vector diagram in the y-z plane
at x = 0. This figure shows the flow field in the incoming jet and in the out-
flow direction. There is some indication of entrainment of the fluid near the
outflow boundary at the top wall. This is possibly due to the finite extent
of the computational domain and the implementation of the outflow boundary
conditions. Figure 9b shows the velocity vector field in the y-z plane at
x = 1.5D, which 1s the fountain flow region. The characteristic fanlike
behavior of the fountain as it spreads up and outwards is clearly visible. This
is due to the collision of two wall jets, which results in the fluid rising into
the fountain and spreading up and out towards the outflow. Figure 10a shows the
velocity vector diagram in the x-z plane at y = 0, and Figure 10b shows the
corresponding velocity field at the x-z plane at y * 1.5D. These views show
the impingement of the jet on the ground and the fountain due to wall jet
collisions. The formation of a recirculatory region on the top wall is
observed in Figure 10b, which shows the x-z plane halfway to the outflow. This
i8 due to the impact of the fluid in the fountain on the top wall.

The steady-state v-velocity profiles are shown in Figure lla as a function
of z in the x = 0 plane. The behavior of the wall jet on the ground towards

the outflow 18 similar to that in the H = 1.5D case. There are more regions of

reverse flow on the top wall due to the entrainment near the outflow, as seen
in Figure 9a. Figure 11b ghows the corresponding u-velocity profiles in the y
= 0 plane. The wall jet on the ground towards the fountain and the reverse jet
flow on the top wall are observed. This reverse jet flow is weaker than in the

H = 1,5D case. It 18 evident from these figures that the resolution in the {
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.*2 z-direction for the H = 3D case {8 very poor, with the wall region resolved
5J% within two grid points. The only solution to this lack of resolutiorn is to
7 increase the number of points in the z-direction, which would also increase the
'$; computational effort required. However, the coarser resolution simulations did
%: reproduce the large-scale motion reasonably well, For this reason, and also
}:E for computational ease, we have restricted ourselves to the coarser mesh 1in |

) these simulations.

:l The variation of pressure in the y-z plane at x = 0 is similar to that in |
Eﬁs the H = 1.5D case. The variation of pressure in the x-z plane at y = 0 is
1 shown in FPigure 12a. The pressure increases to its stagnation value at the jet
. impingement point and then decreases in the x-direction. As the fountain axis
‘;; is approached, the pressure rises again due to the collision between the wall
:“ jets. The pressure reaches another local maximum at the fountain axis. This
:ﬁ pressure peak is lower than the stagnation value at the jet impingement point.
:i The pressure then decreases along the fountain axis but then increases to

x}j another local maximum at the location where the fountain impinges on the top
:&k wall. However, unlike in the H = 1.5D case, this local peak is much lower than
E: the peak at the wall jet collision zone. This again shows that increasing the
’ jet-to-ground distance decreases the 1iftoff capability of the fountain. These
- results also suggest that, in VIOL-type flow fields, there are three stagnation
:: regions. The impingement point is the primary stagnation point, and secondary
? stagnation regions occur in the wall jet collision zone and the fountain

) impingement zone on the top wall.
A The variation of the jet half-velocity width as a function of height, as

:ﬂ shown in Figure 12b, indicates that the jet starts to spread at around 0.75D

:3 from the jet exit plane, which 18 about the same location for the H = 1.5D

Y cagse. This jet spread 1s much more than in the short height case due to the
;;‘ longer distance the jet has to travel before impinging on the ground. The

‘i spread of the fountain is also large and quite rapid above z = 1.2D, as shown
::2 in FPigure 12c. The increase in spreading seen below z = 0.75D 18 probably not
i; very reliable, since near the wall jet collision zone the flow changes

fi direction rapidly and the width calculations may not be accurate.

N These results show the characteristic steady-state flow field obtained due
:; to impinging jets. The general flow patterns observed in these calculations
=3 are in agreement with the experimental data. However, in actual VIOL

t operations near the ground, the exhaust from the engines is usually highly

~

}"

.‘ TR-403/4-87 23

A N Y e A




turbulent and unsteady. This causes the jet shear layer to go unstable due to

'« ,".‘,"."',:.' ‘1-.,)’ A

the growth of the shear layer instability mechanism. The shear layer rolls up

into vorrices that undergo a pairing/merging process to form large-scale

:& coherent structures. The motion of these large-scale structures is the area of

;1 main interest. To simulate the large-scale motion, we have simulated impinging

éj jets that are forced at a specified frequency. To initialize the flow field

. for the forcing studies, we use the steady-state solution shown above as an

:i initial condition. The results of the forced impinging jet simulations are 1
:E described in the following sections. :
.- ‘

4.2 Axisymmetrically Porced Impinging Jets

» (4
i S

The study of turbulent shear flow has undergone considerable changes in the

recent past, brought about by the discovery of large, spatially coherent

.
¢
Il

Polr

Iy

structures in various types of shear flows. These structures have been shown

to be an intrinsic part of the shear layer growth and its mixing processes. In

experiments by Brown and Roshk027 and Crow and Champagne,11 these large-

y "L.‘L

[l Sy’

scale structures were observed as spatially coherent and predominantly

s

u"‘

two-dimensional in the earlier part of the shear layer development. In jet

. ' flows, for example, the shear layer instability plays a pivotal role in the

:f transition of the initially laminar shear layer to turbulent flow. The shear
_:‘ layer becomes unstable due to the growth of linear instability waves and rolls
. up into axisymmetric vortex rings that undergo a pairing/merging process,

resulting in a large coherent structure downstream. These structures

eventually break down due to three-dimensional effects into small-scale

turbulent flow. It has been observed that the formation of these large-scale

DRRRRE |

..
o

".‘- .
'l'l' ot ot

structures has a predominant preferred frequency called the jet-preferred
mode. This preferred mode has been ghown to fall in the Strouhal number

(St = £D/U) range of 0.2 to 0.6 (Gutmark and Hozs). This wide variation in

*

the jet-preferred mode has been linked to the differences in experimental

facilities and in background turbulence levels., It is generally agreed,

v
[

‘.

e e at e

however, that this preferred mode is almost independent of the initial shear

layer thickness. It was also observed that the motion and growth of these

s

structures are highly sensitive to harmonic forcing. This indicates that a

study of forced Jets can provide a detailed understanding of the evolution and

=
- ¥
Pr o

dynamics of large-scale coherent structures in the flow fleld.
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In this section we present results obtained for the case when the jet is
forced axisymmetrically. Both single- and two-frequency forcing were
simulated. Essentially, to perturb the incoming jet profile at a specified
frequency, a sinusoidal waveform was superimposed on the jet mean velocity
profile. Thus, the ring vortices that are generated due to forcing were
embedded in the mean flow. The frequency of forcing was chosen to correspond
to a Strouhal number based on the jet diameter of around 0.47 for the single-
frequency forcing. This Strouhal number falls within the so-called jet-
preferred mode range and 18 used here as a characteristic forcing situation.
No attempts were made to vary the forcing frequency. For the two-frequency
forcing cases, forcing simultaneously at St = 0.235 and St = 0.47 and at
St = 0.47 and St = 0.94 was investigated. The forcing levels were varied from
10 percent to 20 percent of the mean velocity. Although these are relatively
high forcing levels, they are similar to the experimental study by Didden and
Ho,lo who used 0.18U forcing levels to study isolated {mpinging jets.
Furthermore, an advantage of using such high levels of excitation is that the
{mposed disturbance suppresses the natural jet instability and the background
small-scale fluctuations so that the response of the jet and the flow field is
controlled by the forcing. Thus we can study the development of the coherent
vortices in the impinging jet flow field.

All simulations were first computed to steady state as discussed in
Section 4.1, and then the disturbance at a prescribed frequency was added to
the jet velocity profile at the jet exit plane. The results presented here are
after approximately 10 to 12 cycles of forcing so that the flow field has

reached a quasi-stationary state. Detailed data were then obtained for one to

s
h)
)
b\
~
~

two cycles of forcing. Although a large amount of data has been obtained, only
characteristic results are pregsented here. To understand the dynamics of the
large-scale coherent motion, the main focus has been to look at the detailed

vorticity patterns in the flow field. The vorticity contour fields provide a

visualization of the motion and structure of the vortex rings that are shed by
the jet during a forcing cycle. The three-dimensional vorticity surface plots
provide a means for studying the stretching, tearing, and breakdown of the
vortex rings in three-dimensional flow flields. Additional information of the
flow field has also been obtained in terms of the velocity fields and pressure

field in the computational domain. These data are presented wherever

appropriate.
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The results presented in this section fall into the following two general
categories:

(1) Impinging jets forced in phase

(2) Impinging jets forced out of phase
For the in-phase forcing studies, a single-jet geometry is modeled. The
periodic boundary condition at the fountain axis forces the wall jets to
collide at the fountain plane, x = X, in phase. For the out-of-phase
forcing simulations, we use a double-jet configuration. The forcing is imposed
on both jets independently so that the effect of the phase difference between
the forcing of the two jets can be studied and its effect on the fountain

spreading can be evaluated.

The effect of forcing on impinging jets at two different heights above the
ground was studied. However, both the short height (H = 1.5D) and the long
height (H = 3D) jets studied here are located quite close to the impinging
plane. This implies that the simulations performed here are studying the
situation when the forced jet is located in close proximity to the ground
plane, which 1s characteristic of the initial stages of takeoff or the final
stages of landing of a VIOL aircraft (Kuhnl). In actual VIOL operations, in
the vicinity of the ground the jet-to-ground distance will vary considerably.

For the single jet, since all the forcing studies presented in this section
employ axisymmetric forcing, the planes x = X, X = X5, and y = yJ are
assumed to be planes of symmetry. The computational domain in this case is
bounded by the planes x = X and x = X, in the x-direction and by the
planes y = vy and y = Yy in the y—direction (see Figure 3). A grid of
32x64x32 15 used for these single-jet configurations. For the double-jet
configuration for axisymmetric forcing, the planes x = X, X = Xp» and
y =y, are assumed to be planes of symmetry. The computational domain in
this case 18 bounded by the planes x = X and x = X in the x-direction and
by the planes y ™ Yy and y = Y, in the y—direction. A grid of 64x64x32 is

used for the double-jet configuration.

4.2.1 In-Phase Forcing

For the in-phase forcing, the velocity perturbation at the jet exit is
defined by

w'(x,y,t) = -A wo(t) ain(2ﬂt/tp)
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where r 1s the radial coordinate relative to the jet axis and A is the
amplitude of the forcing, which i1s varied between 10 and 20 percent of the mean
flow. Also, wo(r) is the unperturbed mean jet profile defined by Equation
(37). Two different heights of the jet exit location with respect to the
ground were studied in these simulations. Due to the enormous amount of data
obtained, to simplify the presentation of the results we discuss each class of

simulation separately. Wherever possible the plots presented for these

simulations are shown, for example, using identical contour intervals to allow .
ease in comparison. We first discuss the results of the simulation of the ;
forced impinging jet for the jet-to-ground distance of 1.5D. The simulation of

the case with a jet-to-ground distance of 3D is then discussed.

Short Height Case (H = 1,5D)

Figures 13a through 13c¢ show the x-vorticity contours in the y-z plane at
the centerline (x = 0) plane for a cycle of forcing at a Strouhal number of
0.47. This plane shows the outflow direction, and the figures are shown one
half cycle apart. As can be seen, during a forcing cycle, a large vortex ring
is shed by the jet. In these calculations, D = 1 and U = 1, and thus
f =St = 0.47, The phase speed of this shed vortex ring in the jet before
impingement, based on the forcing frequency, 18 approximately 0.65U, which is
consistent with experimental observations in both the impinging jet and the
free jet. Didden and Holo measured a value of 0.61U for the phase speed of
the vortex ring in an isolated impinging jet. The shed vortex is convected
downstream towards the ground plane and is stretched as the impingement region
is approached. Near the impingement region, the jet shear layer deflects
outwards and {8 under a stabilizing curvature effect. Upon impinging the wall,
the vortex ring shape starts to distort as it continues to propagate along the
ground wall. Unlike in an isolated impinging jet where the vortex propagation
on the ground plane is uniform in all directions, in the present case the
presence of the fountain modifies the vortex dynamics considerably. In these
calculations, the fountain plane i1s located at 1.5D and the outflow is located
at 3D from the jet centerline (see Figure 3 for the geometry). Thus, the flow
field 18 not the same in these two directions. The ring vortex reaches the
fountain region and collides with the other wall jet before it reaches the
outflow. Therefore, although the initial propagation on the ground plane is

uniform in all directions, due to the fountain effect, the vortex ring starts
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to twist by around y/D = 1.5. As the impingement region is approached, the
centerline velocity of the jet goes to zero as the flow approaches the
stagnation point. However, this does not seem to affect the propagation speed
of the vortex ring in the jet significantly because of the balance between the
deceleration due to the plate and the acceleration due to the shear layer
curvature. This 1s again in agreement with the experimental obe2rvations. On
the wall, the vortex ring propagates towards the outflow at a convective speed
that is much slower than the value of 0.650 in the impinging jet. The value
obtained in these calculations indicates a phase speed of around 0.2U to 0.3U
in the outflow direction. This is slower than the value measured (0.45U) for
the isolated wall jet flow in the experiments.10 This slower speed is due to
the presence of the fountain, which entrains the vortex ring into it and
thereby slows down the convective speed of the ring in the outflow direction.

As the vortex ring propagates along the wall, it induces a secondary
vorticity on the ground as can be seen in the figures. This region of
secondary vorticity also moves downstream with the primary vortex and evolves
into a ring vortex of opposite vorticity. During propagation on the ground,
the primary vortex ring diameter increases and the vorticity in the ring
increases. However, further downstream the rings start to break down due to
three-dimensional effects and they start to lose their coherence. This
breakdown was also observed in the experiments and was attributed to possible
growth of azimuthal instability. However, the present simulation imposes
symmetry on the flow field, so only symmetric instability waves can grow.
Thus, it is possible that the observed breakdown may be caused by the
excitation of higher axisymmetric modes. The observed breakdown is possibly
due to a combination of the effects of the vortex diffusion, the liftoff of the
vortex ring into the fountain, and the growth of axisymmetric instability.

The appearance of the secondary vorticity on the ground is observed around
y/D = 0.6. Although the presence of secondary vorticity on the wall boundary
layer does not imply separation, separation 18 always accompanied by secondary
vorticity. The appearance of the secondary vorticity is in agreement with the
experiments of Didden and Ho,lo and the general behavior observed in their
experiments was also reproduced {n these calculations. For example, as the
primary vortex ring propagates downstream, the secondary vortex region also
moves with it, and the counterrotating vortex rings show an indication of 1lift-

ing off the ground as the outflow boundary is reached. This can be seen more
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clearly in Figure 13d, which shows the wall region in more detail corresponding
to Figure 13a, and in Figure 13e, which shows the x-vorticity in the y-~z plane
at x = 0.51D which is just outside the impinging jet region. The observed
liftoff phenomenon is due to their mutually induced velocity fields. This
1iftoff of the counterrotating vortex rings was also observed in the
experiments., However, the secondary vortex lifting off the ground and wrapping
around the primary vortex was not fully observed perhaps due to the proximity
of the outflow boundary.

In the direction of the fountain axis, the primary vortices reach the
collision axis before the vortex reaches the outflow and starts to climb up the
fountain axis. Figures l4a through l4c show the y-vorticity component in the
x-2z plane at y = 0 for a forcing cycle corresponding to Figure 13. The vortex
in the fountain after reaching the top wall continues to move along the upper
wall until it reaches the impinging jet region, where a part of it is entrained
into the primary jet. This contributes to the spread of the jet by entraining
fluid into the jet. The presence of secondary vorticity can be seen on both
the top and ground walls in these figures. However, the secondary region on
the ground plane is relatively steady compared to the secondary regions
observed in the outflow direction. This is due to the collision of the wall
Jet with an equal and opposite wall jet. Just outside the jet region, the
vorticity pattern shown in Figure 14d shows that the structures in the fountain
are still coherent, but by y/D = 1.5 (Figure l4e) the fountain has broken down
to much weaker structures. Therefore, the fountain maintains its identity only
in the region y/D < 1.5. Hence, the extra lift effect of the fountain probably
will come from the increase in pressure in a limited region on the top wall.

In Figures 15a and 15b we present, one-half cycle apart, the z-vorticity
contours in the x-y plane just above the ground plane. These z-vorticity
contours show the vorticity due to motion in the x-y plane. This is a top
view of the vortex pattern on the ground. Figure 15a shows the curved vortex
rings on the ground, and comparison with Figures 13 and 14 indicates that the
observed counterrotating pairs correspond to the primary-secondary vortex ring
pairs. As the fountain axis is approached, the coherency of the z-vorticity
18 lost. At an x-y plane 1D above the ground, the z-vorticity contours are
quite different, as shown in Figures 15c and 15d. The vortex rings are more
skewed towards the outflow in this plane, and regions of small-gcale

structures are observed. The flow field region in the fountain axis is made
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:i: of isolated structures each of which corresponds to a vortex ring that has

:ij lifted off the ground and become entrained into the fountain. On the top

. wall, the z-vorticity contours (not shown here) indicate breakdown into

;?i: small-scale structures.

;:?E To visualize the flow field in a more realistic manner, we show in

5Q§I Figure 16a the three-dimensional vorticity field. In this figure we have

;“5 plotted the total vorticity magnitude as defined before and view it in a

‘%}‘ direction that shows the outflow region. Both the primary and the secondary
fEﬁ vorticity are shown as surfaces of the specified vorticity level, which

f:% indicates that all vorticity higher than that shown is inside the surface. To
o show the 1iftoff of the vortex rings into the fountain more clearly, we show
i&{ in Figure 16b the same view as in Figure 16a but at a much higher vorticity
‘;:i level. Only structures containing vorticity higher than the level shown are
igﬂ visible in this figure., The liftoff of the primary vortex ring into the

LI fountain is clearly shown. Although the adjacent counterrotating secondary
;&;: vortex ring attempts to follow the primary ring up the fountain, it does not
;:: completely achieve this and remains attached on the ground. Figure 16c shows
’Ei the total vorticity surface from a view that shows the fountain region. The

{ liftoff of the primary vortex ring into the fountain and the secondary vortex
:i ring on the ground plane can be seen. Using these three—-dimensional vorticity
,23 field surfaces, we can now understand Figures 13 and 14 more clearly. It can
:;5 be immediately seen that the primary vortex ring on the wall moves on the wall

in the outflow direction but is lifted off the plate as the ring climbs in the

fountain axis., As this happens, the vortex ring is stretched and twisted, and

further downstream it breaks down due to three-dimensional effects. The

R

-

::EZ secondary vortex ring generated by the primary vorticity on the wall, however,
“ does not follow the primary ring up the fountain and seems to lose coherence
i? as the primary ring lifts off the ground.
réi: Additional data in terms of the velocity vector and pressure gradient

‘éﬁ fields were also obtained in these calculations., Figure 17a shows the
- @ instantaneous velocity vector field at x = O in the y-z plane corresponding to

.f:ﬁ Figure 13a. The vector field indicates that regions of recirculating flow are

‘:ii associated with each of the vortex rings and that the fluid is being entrained

jE\ into the wall jet. This has also been observed in the experiments. Figure 17b

1

shows the pressure gradient vector field in the vicinity of the impingement
point. In this figure, the vector length indicates the magnitude of the
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pressure gradient, and the direction of the vector indicates the region of
high pressure. The pressure reaches a maximum at the impingement point. The
regions of entrainment and recirculation are shown more clearly in Figure 17¢,
which shows the velocity vector field near the wall. Figures 17d and 17e show,
respectively, the corresponding vorticity contour and pressure gradient fields.
Comparison of Figures 17c¢ and 17d indicates that the reglon of vortical motion
1s not the same as the region of rotating fluid. This is important because in
interpreting the velocity vector field to identify vortices is not correct and
would produce erroneous conclusions. In experimental visualization, particle
tracing coupled with time-lapse photography is usually employed to obtain the
instantaneous pathlines. The velocity vector field can be determined from
these data. However, to determine the vorticity, the gradient of the velocity
vector field must be calculated from the vector field. It is quite difficult

to observe the vortical motion directly in experiments. To visualize vortical
motion it 18 necessary to look at the vorticity contours. The velocity vector
field, however, provides an understanding of the flow motion caused by the
coherent vortices and shows entrainment of the potential flow region into the
wall jet very clearly. Figure 17e indicates that the reglon of adverse
pressure gradient is associated with the formation of secondary vorticity.
Therefore, it seems from these calculations that the contention by Didden and
Ho,lo that the formation of secondary vorticity is due to the unsteady
separation of the wall boundary layer induced by an adverse pressure gradient,
seems justified. The adverse pressure gradient is associated with each of the
secondary vortex rings shown in these figures and indicates low-pressure zones
in the recirculation regions.

Figure 18a shows the velocity vector field in the x-z plane at y = 0, which
is the plane at the jet axis. The impinging jJet and the fountain regions are
visible in these figures. Comparison with Figure l4a, which shows the

corresponding vorticity contours, again indicates the inability of the velocity

4

vector field to resolve the vortical motion. The corresponding pressure

%

..v
-:-‘:'1 ¥

gradient field is shown in Figure 18b. This figure again shows the

relationship between an adverse pressure gradient and the formation of

-

secondary vorticity. Figure 18c shows the velocity vector field in the x-z
plane at y = 1.5D, which is halfway to the outflow. Figure l4e shows the

»

corresponding vorticity contour field. Comparison again shows the different
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Li; types of flow fields observed by viewing the velocity field and the vorticity

A

i’u contour field. The velocity vector field indicates a large region of recircu-
'~ lation caused by the impingement and the spreading of the fountain on the top

R

D wall.

e Additional data of the flow field were also obtained in terms of the

velocity profiles on the ground plane. Detailed velocity field data were

'S
»

v

obtained. Here we present some characteristic results. Figures 19a and 19b

?:ﬁ show at x = 0 and x = 0.51D, respectively, the instantaneous v-velocity

;sg profile between the two walls as a function of y~locations. The wall jet is
;:ﬁ quite strong just after impingement but then slows down as the outflow is

. approached. On the ground plane, a small region of reverse flow is seen

t;?f throughout the forcing cycle. This implies that the wall boundary layer may
i;i have undergone seperation at this location. These velocity profiles also show
Eéi that there are local reglons of reverse flow just outside the wall region.

‘1;7 This is due to the recirculation and entrainment of the fluid as seen in

f.;‘ Figure 17. Figures 19c and 19d show at x = 0 and x = 0.51D, respectively, the
¢:: velocity profiles for a period of forcing plotted one-half cycle apart. These
‘f:t profiles are plotted at y = 1.5D, which 1s halfway to the outflow. The wall
i' . boundary layer thickness does not vary significantly with forcing at this

‘#iﬁ location. Regions of reverse flow on the top wall are observed, which is

fig? indicative of entrainment from the outflow region.

i{. Figures 20a and 20b show at y = 0 and y = 0.51D, respectively, the

;j u-velocity profiles as a function of x-locations. The region of the impinging
;:EE jet and the fountain was excluded from these figures. The wall jet speeds up
‘J;a first and then starts to slow as the fountain is approached. The reverse wall
:EEE Jet on the top wall due to the spread of the fountain is clearly visible.

. Figures 20c and 20d show at y = 0 and y = 0.51D, respectively, the u-velocity
:E:E profiles for the forcing cycle. These profiles are at x = 0.75D, which 1is
‘:;i halfway to the fountain. Forcing causes the wall jet on the ground to acceler-
:E; ate and decelerate, but the wall jet on the top wall is affected only weakly.
;:ﬁ‘ The flow reverses above the wall jet on the ground as seen in Figure 20c due
Jﬂs to recirculation from the fountain. However, towards the outflow, the
; N recirculation effect 18 weaker and, hence, the reverse flow region is observed
i %E only near the top wall.

- Figures 2la and 21b show, respectively, the jet width at the x = 0 plane
L:EE and the y = 0 plane. Thege figures show the width of the impinging jet viewed
-0
M
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in the outflow and in the fountain directions. There is some ambiguity near
the ground plane where the shear layer is highly curved and the jet spreads
rapidly. Therefore, the jet width calculated for z < 0.2D may be

meaningless and should be disregarded. In any case, these figures show that
the jet grows with the shedding of the vortex ring and shrinks in the region
where there are no vortices present. This variation is more observable in the
outflow direction than in the direction of the fountain. The jet spreading is
limited in the x-z plane (Figure 21b), which may be due to the effect of
recirculation from the spread of the fountain on the top wall as seen in the
earlier figures. The recirculation results in the fluid getting entrained
into the jet region resulting in a more uniform spread of the jet in this
plane. This entrainment may be the reason why the jet spread at the beginning
and the end of a forcing cycle does not repeat itself. The pattern of
alternating increase and decrease of the jet width with the passage of a large
vortex ring 1s also observed in the fountain as shown in Figure 21lc. Again,
in this figure, the fountain width near the wall jet collision zone

(z <0.2D) is unreliable. The variation of the centerline velocity for a
forcing cycle is shown in Figure 21d. The effect of forcing is predominantly
strong in a region (z > 0.25H) above the ground and is weak near the
impingement region. This is due to the wall acting like a filter and damping
out the disturbances.

In the above set of figures we have presented in detail the results of the
simulation of the forced impinging jet for a jet-to-ground distance of 1.5D.
This extensive set of data was shown to indicate the details of the flow field
that was obtained, The result of this gimulation shows remarkable agreement
with the experiments of Didden and Ho and reproduces many of the experimentally
observed features. The formation of secondary vortex rings due to the impinge-
ment of the primary vortex is observed, along with the downstream propagation
of the counterrotating vortex ring pair. The formation of the secondary region
on the ground plane seems to be associated with the unsteady separation of the
wall boundary layer just downstream of the primary vortex ring. There is
evidence that this is caused by the adverse pressure gradient downstream of
the core of the primary vortex ring. This result agrees with the experimental
observations of Didden and Ho. The convective speed of the vortex ring in the
jet 1s about the same as that observed in the experiments. However, the

convective speed in the wall jet is slower than the experimental value, which
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is due to the formation of the fountain in these calculations. Due to the
collision and the formation of the fountain, the vortex rings do not propagate
outwards uniformly in all directions but are skewed and 1lift off the ground
plane as they are entrained into the fountain. This results in the vortex
rings being twisted and eventually breaking down into isoclated small-scale
structures. There is evidence of entrainment into the wall jet caused by the
propagation of the vortex rings.

We have presented a detailed data analysis of this simulation to indicate
the characteristic flow field dynamics assoclated with forcing of impinging
jets. In the following, we present only characteristic results obtained with
two-frequency forcing. In the experiments with free jets, it was observed
that the large-scale structure formed at the so-called jet-preferred frequency
is usually the end product and does not undergo any further pairing. No
experimental data are available for the corresponding impinging jet situation.
Therefore, we have studied numerically the effect of forcing at two frequencies
that are both in the jet-preferred frequency range. Some characteristic results
of these simulations are presented in the following sections., The general
conclusions discussed above are still valid for the rest of the simulations.

We performed simulations in which two frequencies of forcing were imposed
on the jet profile. For this case we forced the jet simultaneously at Strouhal
numbers of 0.47 and 0.94., A forcing level of 0.1U was used for both the
frequencies. Figure 22a shows the three-dimensional perspective of the
absolute total vorticity at the same level and orientation as in Figure 1l6a.
The jet shear layer does not show any clear indication of the vortical
structures, and the primary vortex rings on the ground show two kinds of
structures. Merged vortex rings and isolated rings can be seen in this
figure. There is an indication of palring of the vortex rings near the
outflow, which 1s not completed gince the rings are lifted off into the
fountain., Figure 22b shows the view of the fountain for this forcing case.
This figure indicates the 1iftoff and merging of the primary vortex rings in
the fountain. No pairing is observed in the impinging jet itself.

With these three-dimensional views in mind, we now look at the x-vorticity
contours in Figures 23a through 23c for a period corresponding to a Strouhal
number of 0.47. The figures are half a cycle apart, which in this case is the
period of the second forcing frequency. Figure 23a corresponds to the view

shown in Figure 22, These figures show that the primary vortices that are
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shed are stretched in the jet shear layer but becomes more coherent before ¢
impingement. On the ground, complex vortex merging process is observed unlike
the single frequency forcing where the shed axisymmetric rings were all
isolated. In Figures 23b and 23c we see that the smaller vortex C begins a
merging event with vortex D near the outflow, and vortex B is left on its own.
From the periodic behavior it is evident that vortex B will probably pair in v
the next forcing cycle with vortex A, the vortex that is following it. It Zﬂ
also appears that the effect of multiple forcing frequencies delays the ‘Y

formation of the secondary vortex rings on the ground and the liftoff of the i'
counterrotational pair is not observed until around y = 2.5D. The y-vorticity 1
contours in the x-z plane at y = 0, shown in Figure 24, gshow the vortical Y
motion in the fountain. No major differences are observed between the single- X
and double-frequency forcing studies in this plane except that a larger vortex a

.

ring climbs up the fountain axis for the latter case and the structure
entrained into the impinging jet due to recirculation is also larger. This

t
may, of course, cause an increase in the spread of the impinging jet. ;
“~

Long Height Case (H = 3D) il

The above calculations of the forced impinging jet were for the jet 5
location at H = 1.5D. Similar forcing studies were repeated for the H = 3D s?
case. For these calculations, the same number of grid points was used in the Q
z-direction. Therefore, there was a reduction in resolution in the z-direction \g
for the H = 3D case. Although it was possible to double the grid points in E;
the z-direction, this would have increased the computational time considerably. A
The calculations using 32 grid points provide only a limited resolution of E
flow in the wall boundary layer but in general resolves the large-scale motion e
in the flow fileld.

Figure 25a shows the three-dimensional view of the total vorticity surface 1

at a level |Q| = 1.95, which is the same level as in Figure 16a. The forcing

at St = 0.47 using a level of 0.2U causes in the shedding of a large coherent i

vortex ring. This ring impinges on the plate and propagates in a manner 5

} similar to the H = 1.5D case. However, at the level shown, the vorticity is ::
less pronounced and the spacing between the vortex rings on the ground is }}

larger than in the short height case. This is expected because of the larger ;:

distance the vortex ring has to travel before impinging on the plate., Upon &;

1 impingment, these vortex rings propagate on the wall towards the outflow and ;3
.\

Y
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are lifted off the ground and carried into the fountain, There is a secondary

>
PP R )

vorticity region on the ground, but it is not distinct until near the outflow ;

-
-
-

where it rolls into a counterrotating structure and shows an indication of

r ¢

lifting off. Due to the increase in the jet-to-ground distance, the vorticity

- pppsrre

on the top wall is weaker and does not show up on this figure. This indicates
a much weaker effect of the fountain as compared to the short height case.

Figure 25b shows the view of the fountain region. The vortex rings in the

-

? [}
a xR 8 .4 8

fountain are much smaller and less coherent than in the short height case.
Figures 26a and 26b show the x-vorticity contours half a cycle apart for

this forcing case. The large vortex shed by the jet is clearly seen, and the

contours are plotted at the same interval to correspond to Figures 13 and 14

for the short helght case. The vortex ring shed by the jet is much larger

LI T S R R

than in the short height case. The formation of the secondary vorticity on
the ground plane is not observed until around y = 1.6D. The appearance of
secondary vorticity around v = 1.6D for this case seems to agree with Didden

and Ho's observation of a distance of r/D = 1.6. However, this delay in the

Sy

appearance of the secondary vorticity could be attributed to a lack in grid

K" v v s
LA Ny

resolution in the wall region. As the primary vortex ring climbs up into the

fountain, the vortex ring in the outflow region starts to 1lift off the ground

plane, and the secondary region also lifts off. In the fountain axis, the

G e

flow pattern is quite similar to the short height case except that the vortex

has to climb a longer distance, which causes it to diffuse and lose coherence.

Lo

Figures 27a through 27c show the y-vorticity contours in the x-z plane at y = O
half a cycle apart. The characteristic pattern described above is clearly

observed. The entrainment into the jet due to recirculation on the top wall

-
[ P o Yoy an

- may be causing the increase in the jet spread more than in the H = 1.5D.

. Figures 27d and 27e show the y-vorticity contours in the y = 1.5D plane which
is just outside the jet region and halfway to the outflow. The fountain again
loses its identity beyond y = 1.5D.

LLASAS N

-

The variation of the v—velocity in the y-z plane at x = 0 for the forcing
cycle is shown in Figure 28a halfway to the outflow (y = 1.5D). No major

e

effect is observed except near the wall jet region. There is reverse flow on

e

the top wall near the outflow possibly due to local entrainment. Figure 28b

LoOh

shows the corresponding u-velocity variation for the forcing cycle in the x-z
plane halfway to the fountain (x = 0.75D). The wall jet regions omn the bottom
and the top wall are not significantly affected, but the flow in the middle
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M
fE shows local reverse flow. The sinusoidal variation in the velocity profile is
'83 caused by the mc.ion of the vortex ring. Figure 28c shows the variation of
) the jet width for the forcing cycle indicating the spreading of the jet with
.;ﬂ the passage of the vortex ring. The forcing effect is more pronounced in the
] 2 fountain as can be seen in Figure 28d, which shows the variation of fountain
W width as a function of height above ground.
Simulations with two frequencies at St = 0.47 and 0.94 imposed at the jet
’&ﬁ exit planes similar to the short height case were also carried out. Figure 29
é: shows the three-dimensional vorticity surface at the same level as in the
‘ : previous cases. The basic pattern of the primary vortex structures on the
i ground right after impingement is similar to the short height case. The
'j vortex ring becomes more coherent further downstream and is lifted into the
ﬁg fountain. However, unlike the short height case, the ring structure stays on
{f the ground as it approaches the outflow. The formation of a secondary vortex
¢ tube occurs as the primary vortex ring moves downstream. Breakdown of the
'-: vortex ring near the outflow and in the fountain axis is also observed. The
.ff vorticity surface at a lower vorticity level shows that there are other weaker
’E vortical structures in the flow field that are the remnants of the vortices
:J shed by the jet.
‘g. To understand the effect of the second frequency on the vortex dynamics,
fi we repeated the previous case with excitation at frequencies corresponding to
%; Strouhal numbers of 0.47 and 0.235. 1In this case, the second frequency is the
subharmonic of the primary forcing frequency. A forcing level of 0.1U is used
rr' for both the frequencies. The computations were carried out from identical
‘i initial conditions as for the case shown in Figure 29. Figure 30 shows the
‘: three-dimensional vorticity field after the same elapsed time as in Figure 29,
P‘ Comparison of these two figures indicates similar flow features on the ground
. plane. However, the vortex structure in the impinging jet is not as distinct

as in the previous case. This 18 possibly due to the effect of the subharmonic

in the forcing. However, there was again no real indication of any pairing in

the jet. This seems to indicate that in impinging jets the presence of two

frequencies in the jet-preferred range does not produce any enhancement of the

pairing process. Of course, the effect of jet—-to—ground distance is an

important variable that can possibly cause the obgerved effect. Simulations

at various jet heights will have to performed to understand the effect of

forcing at multiple frequencies in the preferred mode range.
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In Figures 31la through 3lc we present the x-vorticity in the y-z plane at
x = 0 for the case shown in Figure 30. The appearance of the secondary
structure is delayed until y = 1.6D, but near the outflow as the primary
structure starts to pair and 1lift off the secondary reglon again becomes quite
distinct and coherent. Pairing is completed between the two structures near
the outflow in Figure 3la as shown in Figure 31b. The vortex ring immediately
behind these two rings attempts to pair with the previously paired structure
near the outflow. However, this process is not completed before the paired
structure 1ifts off and weakens due to diffusion and vortex stretching.

The phase speed of the vortex ring in the outflow direction 18 around 0.2U,
This 1s again slower than the phase speed observed in isolated impinging jJets.

Although it 1s not clearly visible in these figures, a closer view
indicates that there are actually two vortex cores in the structure seen at the
impinging region in Figure 3lc. This can be seen more clearly in Figure 314,
which shows the vorticity at x = 0.51D which is just outside the jet shear
layer. This may indicate that the effect of two-frequency forcing in the
impinging jet 18 to cause a pairing/merging process to occur while impinging
on the ground. The pairing observed near the outflow is probably due to
higher axisymmetric modes generated in the flow field. Further comparison of
Figures 31c and 31d indicates that although the pairing has been completed at
x = 0, it is still incomplete at x = (0.5D. Figure 32a shows the y-vorticity
in the y = 0 plane showing the fountain region at the end of the cycle. Close
examination of the vorticity indicates that there are two vortex cores in the
structure impinging on the ground. Figures 32b and 32c show the y-vorticity
in the y = 0.5D and y = 1.5D planes, respectively. The vortex pattern in the
fountain is still distinct at y = 1.5D and is more complicated with multiple
cores.

To determine whether the forcing level had anything to do with the dynamics
of vortex cores in the impinging jet, we repeated the previous calculation
with 20 percent forcing levels. Figure 33a shows the three-dimensional
vorticity at the same level as in Figures 29 and 30. At this level of
forcing, the structure in the impinging jet is more distinct, as is expected.
The vortex ring on the ground plane 18 also more distinct. The vorticity
pattern two cycles later in time i8 shown in Figure 33b. The primary vortex

ring in the jet is still the same. There i8 no vortex ring impinging on the
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plate at this instant, and therefore there is a region where there are no
vortex rings present. A c-aplicated pairing phenomenon is observed in the
outflow region, and there is an indication of breakdown of the vortex rings
into isolated vortical tubes. Comparison with the simulation at the lower
forcing level indicates that similar vortical structures are present but have
lower vorticity in the cores of the structure,.

Figure 34a shows the x-vorticity contours in the y-z plane at x = 0
corresponding to Figure 33b, The liftoff of the counterrotating vortex rings
is observed around y = 2D. The appearance of the secondary vorticity region
1s delayed until the primary vortex core starts to lift off the ground. The
pairing/merging between the three vortex rings in Figure 33b is seen in this

figure. However, in a y-z plane at x = 0.51D, the x-vorticity contours shown

A A Yt e

in Figure 34b i{ndicates that the vortex rings are still independently coherent.

This indicates that the pairing between large vortex rings on the ground plane
may be more of a local phenomenon than a global one in these impinging jet
flows. In these figures, no multiple core in the impinging vortex rings 1is
seen. However, Figure 35a, which shows the y-vorticity contours in the x-z
plane at y = O corresponding to Figure 34a, indicates the presence of multiple
vortex cores in the impinging jet region. The y-vorticity contours in the x-z
plane at y = 1.5D half a cycle apart are shown in Figures 35b and 35¢. The
merging of different vortex rings is occurring, which results in spreading of
the shear flow region in the fountain. This in turn causes the fountain width
to increase.

To determine whether the structures observed on the ground maintain their
coherence in the spanwise direction during propagation, we looked at the x-
and y-vorticity contours in the x-y planes. Figures 36a and 36b show the
x-vorticity contours in the x-y plane at z = 0,14D and z = 0.8D,
respectively. Figures 37a and 37b show the corresponding y-vorticity contours
in the same two z-locations. The spanwise coherence of the primary and
secondary vortex rings propagating towards the outflow is evident in Figure
36a almost to the fountain axis. Near the outflow, the structures lose their
coherence. The lack of coherence of the x-vorticity near the fountain is due
to the change of flow direction causing the vorticity to shift to the
y-component. Figure 37 shows that the coherence of the y-vorticity in the

fountain i{s distinct more at z = 0.8D than near the ground.
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.;; The effect of forcing on the spread of the jet is shown in Figure 38a.

:3 This figure shows that the rapid sinusoidal variation observed iu the single-
* frequency forcing case 1s absent when two frequencies are imposed on the jet.
fif This figure shows the jet width in the y = 0 plane. The corresponding jet
';i width in the x = 0 plane is shown in Figure 38b, Evidently the jet spread is

E: not the same in the two directions. This is due to the presence of the
. fountain, which modifies the jet spread in the x-z plane. The jet width
‘}i variation actually shows a pinching effect due to the passage of the vortex.
bi; Similar effects are observed in the spread of the fountain in the x-z plane at
?; y = 0 as shown in Figure 38c., Comparison of Figures 38b and 38c, which

. presents the jet width and the fountain width i{n the same x-z plane, shows
"gg that there is an in-phase variation near the ground but above it, the fountain
i§ shows more oscillatory motion. This is due to the presence of more vortices
‘ES in the fountain.

g It was mentioned in the preceding discussion that the formation of the

153 counterrotating vortex rings is observed in the flow on the ground. It was
j:& also shown using the vorticity contour plots that this primary secondary
i:' vortex pair rolls downstream and shows signs of lifting off the ground due to
{ the mutually induced velocity field. This liftoff phenomenon is similar to

‘:. the experimental observation, and it 1s interesting to see 1f this fact can be

<. further verified. To do this we need to look at the variation of the

E;: z-component of the velocity as a function of height. Figures 39a and 39b show,
;) respectively, the w-velocity profile in the y-z plane at x = 0 and x = 0.5D.
‘.ﬁ The profiles are plotted from the jet centerline (y = 0) to the outflow
;&: (y = 3D). Figures 39c and 39d show for comparison purposes the corresponding
~$; v-velocity profiles at the same locations. Figures 39a and 39b both show a
® negative w-velocity in the jet region. No positive w~velocity (indicating
- liftoff from the ground) is seen until around y = 2.25D, when significant

positive w-velocity is observed. This corresponds to the liftoff observed in
the vorticity contour figures. The variation of the w-velocity in the x-z
'_. plane at y = 0 and y = 0.5D in the fountain showed no significant 1lift-off

;; from the ground until the fountain axis is approached. In the fountain there
Qf is mostly an upwash, and therefore there was significant positive w-velocity.
:;& It seems from this calculation that the primary-secondary vortex ring pairs do
g indeed 1ift off the ground as they propagate to the outflow. This is

e consistent with the experimental observation.

Wi
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These calculations indicate that the H = 3D flow field is different from
the H = 1.5D case in many ways. The vortex rings are much larger and the jet
and fountain spreads more than in the short height case. However, the general
dynamics of the vortex rings are similar. The liftoff of the vortex ring into -Q
the fountain is again observed. However, the vorticity diffuses more for the .
longer height and, therefore, the vortex structures lose their coherence more
rapidly. The appearance of the secondary vorticity region on the wall seems to
be delayed until around y = 1.6D, unlike in the H = 1.5D case, where the

secondary region was observed much earlier., Although this is in agreement with

O Ll

experimental data, the lack of grid resolution in the wall region may be con-

tributing to this observance. Increased resolution in the vertical direction
should clarify the validity of the observed features in the wall region.

The effect of forcing at two frequencies in the jet-preferred mode range

-
r 5ty

was also investigated. No significant effects were observed in the impinging
jet region. This seems to agree with the free jet studies, which indicates

that the coherent structure formed at the jet-preferred frequency is the

S LA SN

terminal structure of the shear layer pairing process and does not undergo any '

further pairing. There are more complicated effects near the outflow as the

% 5

vortex rings start to show a complex pairing/merging process, possibly due to
the excitation of higher axisymmetric modes. The liftoff of the primary
secondary vortex pair during propagation to the outflow is also observed in

almost all the simulations performed here. This agrees with the experimental

o

visualization of impinging jets.

*eta

a
)

4.2.2 Qut-of-Phase Forcing

To investigate the dynamics of large-scale motion in the fountain formed by

P R

the collision of two wall jets, we have simulated two jets impinging on the

ground. This is one step further towards the more realistic flow fields

a1 Y,

asgsociated with VIOL aircraft. In actual flight configurations, the two jets

correspond to the exhaust of the engines. There is no reason to assume that

o hy

\dh

the engine exhaust will be in phase. Therefore, the effect of a phase
difference between the large vortex rings shed by each jet can possibly effect Y
the spread and stability of the fountain and hence contribute to the liftoff

caused by the fountain. In the previous section, we simulated the computa- ‘

tional domain of a single impinging jet, which assumed by virtue of the
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) periodic bourdary condition that the jets in an infinite array in the )
," x-direction are forced in phase. In this section, we discuss the recsults of

S the simulations when the two jets are forced out of phase. Periodic boundary

Zz conditions are still applied at the boundaries in the x-direction. Thus, an

o infinite array of jets in the x-direction now consists of sets of two jets

}T forced out of phase. Axisymmetric forcing of the two jets is again studied in

‘\; this section. In this case the flow field is symmetric about the plane y = 0

'tj and, therefore, only half the domain needs tv be modeled.

;Ei To initialize the flow, the steady-state flow field obtained in the quarter

e plane is reflected about the plane x = Xp. This results in a symmetric flow

ct field as a starting solution. To study the effect of phase difference, the
~ﬁi two jets are forced independently. The effect of phase difference between the

! 53 two jets of 7/2 and n were studied for both of the height cases. The jet

K" exit velocity profiles were perturbed at 10 percent forcing levels at the same

. frequency corresponding to a Strouhal number of 0.47. No attempts to force

Eﬁ the two jets at different frequencles were carried out due to lack of time.

:; However, such simulations could easily be carried out and will be of interest
,x} and must be considered to understand the complex vortex dynamics in the
itﬁ| fountain. Detalled data of the flow field were obtained as for the single jet
F;E simulations. However, we present only characteristic results that show the

:Ez influence of different phase effects.

he For these out-of-phase forcing simulations, the velocity perturbations at

'i; the jet exit are defined by

¥,
; ;; wL' (x,y,t) = - A wo(rL) sin (Znt/tp)

A

g (Xy,t) = - A wo(rR) sia (Znt/tp -9

'1'.:,5

6
s

 §

where w.' and w,' are the velocity perturbations experienced by the jets

AN L R

,ji: located at stations x = X and x = X respectively. Also, T and Ty are the
»:;i radial coordinates relative to the left and right jet axes, respectively, and
7 $ 18 the phase angle difference between the two jets.

;Cj Figure 40a and 40b show the three-dimensional vorticity surface at two

g

f:} different levels and views. These figures correspond to the H = 1.5D case and
. show the characteristic flow field assoclated with forced impinging double

K jets. The large vortex rings that are shed by the forced jets roll along the
e
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ground towards the outflow and are lifted into the fountain region. The large
structure observed near the outflow closer to the top wall is again similar to
the structure seen in the single—jet case. This structure is seen only in the
H = 1.5D case and may be a consequence of entrainment from the outflow boundary
near the top wall. There are secondary vortex rings formed just ahead of the
primary vortex rings on the ground. The liftoff of the vortex rings into the
fountain can be observed. Although in this simulation the two impinging jets
were forced at a phase difference of 7, there was no profound effect on the
fountain development. The vortex rings from the jets reach the wall jet
collision zone at different times, essentially phase lagging/leading each
other. The centerline of the fountain is no longer steady due to the
asymmetric orientation of the vortex rings in the fountain. Due to the close
proximity of the two walls to each other, the effect of varying the phase of
one jet with respect to the other did not result in any major changes as
compared to the in-phase forcing studies shown in the previous section. The
effects were more pronounced for the H = 3D case, and therefore we concentrate
on the results obtained for that height case.

Figure 4la shows the three-dimensional perspective of the vorticity
surface at the same level as in Figure 40a but for the H = 3D case. This view
shows the outflow direction and the characteristic pattern due to the
propagation of the vortex rings on the ground and the liftoff of the vortex
rings into the fountain., The breakdown of the vortex rings due to liftoff can
also be seen. In the outflow direction, no major changes were observed. Due
to the forcing of the jets at a phase difference of 7, the vortex rings from
each jet on the ground plane are offset from each other. Figure 41b shows the

view of the fountain for this simulation. The offset of the vortex rings in

the fountain from the two jets is clearly apparent. The offset is almost half
the distance between the vortex rings in the fountain. This in effect results
in the vortex rings from each jet to mesh together in a uniform manner. When

the vortex rings are in phase, they form discrete pairs, as was observed in

W N @

the in-phase forcing study described in the previous section. The perspective

view of the flow field at lower vorticity levels did show the characteristic

'.l

recirculation of the fluid in the fountain due to impact on the top wall. The
level of IQI = 1,95 used in these three-dimensional simulations provided an
optimum view of the regions of strong coherent vorticity and is the same level
used to visualize the impinging jets forced in phase. Therefore, these

figures can also be directly compared with Figure 25,
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;ﬂ Figures 42a and 42b show, respectively, the x-vorticity contours in the
;-' y=z plane at x = 0 and x = 3D. These two figures are at the same time and

? correspond to the centerline view of the two jets showing the outflow

.i; direction. The effect of a different phase of forcing results in the two jets
'ij shedding vortex rings at half a wavelength apart. The phase speed in the

-i£ impinging jets is unaffected by the phase difference. Figure 42a shows a

t;; large vortex ring impinging on the ground in the left jet, whereas the vortex
*i" ring in the right jet is still approaching the ground. The propagation of the
i? primary vortex rings in both jets in the outflow direction is basically

.:i similar, and the appearance of the secondary vorticity is observed at nearly

the same location. The liftoff of the primary and secondary vortex rings is

fﬁ observed near the outflow. The speed of propagation of the vortices in both

" the wall jets is around 0.2U.

:; Figures 43a through 43c show, respectively, at y = 0, 0.51D and 1.5D the
ii y-vorticity contours in the x-z plane at the same time as in Figures 40

- through 42. These views show the vorticity in the fountain regions looking in
~ij the outflow direction. In Figure 43a, which shows the centerline (y = 0)

{_E plane, the impingment of the vortex rings on each other at the wall jet
{ ] collision zone is seen. Due to the phase difference, the vortex rings do not

reach the collision zone at the same time. For a phase difference of 7, the

s

vortex ring from the left jet is already entrained into the fountain before

..
-(,

N

the vortex ring from the right jet is lifted off into the fountain. The phase

ST

difference causes the core of the vortex rings from the two jets to be offset

s

;Z;Z by exactly half a wavelength. The vorticity thickness of the fountain is then
:j more uniform than for the case when the jets are in phase, in which case the
.

;: vorticity thickness grows and shrinks with the passage of two in-phase vortex
[y rings. As the vortex rings climb up into the fountain, they are also

{2; stretched, thereby decreasing the strength and size of their cores. However,
.ﬁfj they are gtill distinct in this plane when impinging on the top wall. The

AR

S reverse flow and the entrainment of the wall jet on the top wall into the

o .

- @ impinging jet is also apparent. There is some evidence of the increase in the
LN

iﬁ Jet shear layer due to this entrainment. The structures seen in the center

P

S plane weaken by y = 0.5D, as shown in Figure 43b., The effect of a phase

‘w- N

j? difference is more apparent in Figures 43b and 43¢, which are just outside the
‘o

j~ impinging jet region and halfway to the outflow. The spread of the fountain

Y
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,iff seems to be increased as compared to the in-phase forcing result. The time :
'E;E sequence of the vorticity for a forcing cycle shows that the fountain is :
° flapping near the top wall at a region around y = 1.,5D, This is due to the
!:;: the arrival of vortex rings near the top wall from the jets half a wavelength
:53 apart. This causes the upwash of the fountain to bend whenever a vortex ring
:52 reaches the top wall, There is an indication of a complicated merging process
{ occurring near the top wall. The observed motion of the fountain on the top
_;ﬁ wall indicates that the out-of-phase forcing can modify the spread of the
7:3 upwash and, hence, significantly affect its 1liftoff qualities.
3‘3 To understand the effect of a phase differences on the collision of wall
ir jets, we show in Figure 44 a sequence of y-vorticity contours in the x-z plane
; i: showing the region of collision in more detail. These figure are at quarter
‘;2 cycle apart and are plotted using the same contour intervals., The solid and
’ j dotted lines indicate direction of rotation out and into the paper,
g respectively., Thus, the primary vortex rings in the left jet are negative,
Ti: and the primary rings in the right jet are positive., Figure 44a shows the

i?f collision region corresponding to Figures 42 and 43. The vortex ring in the
,:} left jet 1s already entrained into the fountain, while the ring in the right
i\ jet is still being lifted off. As the primary vortex ring is lifted off into
ii} the fountain, the secondary vorticity associated with that ring dissolves.

*f This secondary vorticity is due to the formation of the wall boundary layer as
’ﬁ: the primary vortex rings propagate above the wall. Near the collision zone,

there is a saddle point behavior that is quite complicated. It appears that

J:; the secondary region associated with the right jet is entrained into the left
‘33 jet shear zone as can be observed in Figures 44a and 44b. This sequence 1is

C reversed in the next two figures due to entrainment of the secondary region of
® the left jet into the right jet. This is due to the phase shift between the
2:: two vortex rings arriving at the collision zone. This behavior is quite
.:- different from the in-phase forcing studies, which showed a symmetric and

:E nearly steady secondary region near the collision zone. The observed
t; entrainment may modify the strength of the vortex rings in the fountain.
;f Further analysis indicated that this entrainment weakens as the outflow is }
&: reached due to the breakdown of the primary rings.

is Figure 45 shows the z—-vorticity contours in the x-y plane as a function of
f height. Near the ground (z = 0.14D, Figure 45a), the vortex rings form the

3
b
"
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curved counterrotating pattern similar to the in-phase single jet case. 1In
these figures, the impinging jet is located in the lower left- and right-hand
corners of the figures but at z = 3D, At a distance of 0.8D above the ground
(Figure 45b), the structure shows the characteristic offset between the left
and the right jet in the fountain in the middle of the figure. The spread of
the fountain and the formation of small-scale eddies is more apparent in
Figure 45c at a distance 1.45D from the ground. On the top wall there is no
significant motion in the x-y plane, and there is also a loss in symmetry
about the fountain axis.

A simulation of the two jets forced at a phase difference of 1/2 was
also performed under otherwise identical initial conditions. There were some
differences between the two phase difference cases. A forcing at the same
Strouhal number and the same level of 0.1U was performed. Figure 46a shows
the three-dimensional perspective of the view of the fountain region at the
same elapsed time as in Figure 44. For this visualization, we used a higher
vorticity level to show the vortex rings 1lifting into the fountain. The vortex
rings from the two wall jets are not offset as for the 7 phase forcing study.
There is some indication of merging in the fountain. The liftoff of the
primary vortex rings into the fountain can be seen clearly in Figure 46b,
which shows the three-dimensional perspective of Wgs During
axisymmetric forcing, the dominant vorticity in the jet is in the theta
component. Therefore, this figure clearly shows the characteristic
axisymmetric puffs shed by the jet due to forcing. The vortex rings stretch
and the core sizes decrease during propagation. Eventually, these structures
break down into small-scale structures.

Figures 47a and 47b show the y-vorticity contours in the x-z plane at
y = 0 and y = 0,5D, respectively. These figures are at the same time as the
results shown for the mphase forcing. In these figures, there is an
indication of some type of merging process occurring in the shear layer in the
fountain. For example, in Figure 47a the right fountain shows a merged
structure at around 1D above ground, whereas the left fountain shows a merged
structure at around z = 2D, Due to the phase difference of n/2, the
vortices in the two wall jets arrive at the fountain a short time apart. This
offset may cause the vortex in one side of the fountain to slow the
corresponding vortex in the other side, thereby g#llowing it to merge with the
ring following it. The merging is still obvious in the plane y = 0.5D shown

TR-403/4-87




in Figure 47b. Figures 47c through 47e show the y-vorticity in the x—-z plane
at y = 1.5D for three different times of the forcing. The complex patterns
discussed above are again seen. Both merging and splitting of the vortex
structures near the top wall is seen in this sequence. The tendency of the
fountain to undergo a slow flapping can be discerned in these figures.

The spanwise coherency of the vortex rings on the ground plane can be seen
in Figure 48a, which shows the x-vorticity contours in the x-y plane. These
structures lose their coherence near the fountain axis where the flow changes
direction. The secondary vortex ring ahead of the primary ring near the outflow

is also visible. The coherency of the y-vorticity is dominant in the fountain

region as shown in Figure 48b, which presents the x-y plane view at z = 0.8D.

To understand the dynamics of the fountain further, a simulation was

.Ill‘

carried out with only one jet forced. In this case, the left jet at x = 0 was

i 9 4
-

forced at a Strouhal number of 0.47 and a 0.2U forcing level, whereas the

b

right jet was maintained at steady-state flow conditions. Figure 49a shows
the three—-dimensional perspective view of the fountain region for this

simulation. The characteristic shedding of the vortex rings by the left jet

LMY b

is clearly visible, and the steady flow in the right jet is also shown.
However, the flow in the fountain is quite different. There is an indication
of structures forming in the right jet as it climbs up the fountain.

Breakdown of the rings in the fountain occurs much earlier than in the
previous simulations. Figure 49b shows another perspective view of this
simulation showing the forced jet region. No vortex rings on the ground for
the steady jet are visible. The breakdown of the vortex rings in the fountain
is again visible in this figure.

Figures 50a through 50c show at y = 0, 0.5D and 1.5D, respectively, the
y-vorticity contours in the x-z plane. It is clear from these figures that
the forced jet sheds vortex rings whereas the unforced jet shear layer shows
the steady flow features. The vortex rings from the forced jet propagate
along the wall towards the fountain axis, where they collide with the steady
wall jet from the right impinging unforced jet. The periodic appearance of
the vortex ring in the fountain from the left wall jet perturbs the right wall
jet at the collision zone. This causes the right part of the fountain to also
start breaking down into discrete vortices that are generally in phase with
the vortices in the forced part of the fountain. The structures shed at the

collision zone are as strong as the vortex rings that initiate the shedding.
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<. However, the fountain does not climb up to the top wall smoothly but indicates
7&: a significant flapping motion. This is also quite obvious in the planes y = 0
° (Figure 50b) and y = 1.5D (Figure 50c).

: j The interaction between the two wall jets in the collision zone is similar
5§ to that discussed for the mphase simulation. This can be seen in Figures

gﬁ 5la and 51b, which show the collision zone in more detail. As a vortex ring

t reaches the collision zone from the left, it seems to perturb the right jet to
:}: generate a weak structure. As the vortex ring in the left part of the fountain
.QS rises into the upwash, it induces the same motion to the structure generated in
; the right part of the fountain. Due to the lack of coherence in the right

‘ fountain, the fountain first bends to the left; but further into the upwash, the
‘:: fountain bends back due to the growth of the structure in the right fountain.
'j: There is again evidence in these figures of the merging of the secondary

K a vorticity of one wall jet into the fountain caused by the other wall jet.

3.» The coherency of the vortex rings in the spanwise direction above the ground
é’; plane is quite distinct. Figure 52a shows the x-vorticity contours in the x-y
:g plane at z = 0.14D for the case of one jet forced at a Strouhal number of 0.47.
:;E Figures 52b and 52c show, respectively, the y— and z-vorticity in the same

i&’ z plane. The vortex rings in the left jet are quite coherent, whereas the

'ﬁi x-vorticity in the right jet is spread out as in the situation for steady flow.
:E The y-vorticity contours show coherency in the fountain region and also show
;:: that a region of coherent y—vorticity in the right jet is created due to the

= forcing effect of the left jet. The z-vorticity contours show only local

;: regions of rotation.
::g The effect of forcing on the flow fleld can also be visualized in terms of
‘:: the velocity vector field to show the large-scale recirculation motion.

;t Figures 53a and 53b compare the velocity vector field for the cases with the
ff{ jets forced at a 1/2 phase and a single forced jet. The bending of the
.{; fountain when only one jet is forced is evident in Figure 53b. Comparison also
:;i indicates no significant differences near the wall jet collision zone. Since we
.‘ have already seen quite a complicated motion of the vortical rings in the

ii collision zone, it is again clear that the velocity vector field cannot show the
ig regions of vortical motion. The spread of the fountain is quite dramatic in
ji; Figures 53c and 53d, which show the velocity vector field in the x-z plane at

: y = 1.5D. The 7/2-phase forced jets case (Figure 53c) shows a much more com-
kﬁ plicated pattern of recirculation than the single forced jet case (Figure 53d).
N
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$§$ 4.3 Azimuthally Forced Impinging Jets
‘§$ In the previous section we discussed the effect of forcing the jets axisym-
i~ metrically. Both in-phase and out-of-phase forcing of the jets were studied
3}3 in detail, and the characteristic shedding of the axisymmetric vortex rings
%3? was simulated. For those simulations, we assumed symmetry wherever possible
0y to reduce the computational effort. By this assumption, the generation and

; growth of nonaxisymmetric modes of disturbances were excluded. However, this
,f; is not possible in reality. In fact, experiments indicate that the axisym-

Zji metric rings shed by the jet propagate along the ground and eventually break
fi? down possibly due to the growth of azimuthal disturbances. The simulations
oo discussed in the previous sections did not allow the growth of azimuthal dis-
f: turbances by virtue of the symmetry condition. However, the growth of azi-

,3& muthal instabilities is of great interest in the case of impinging jets because
b so little of the vortex dynamics 1s understood. Therefore, in the present

!‘ section we present the results of studies of the case where the jets are forced
¢i in the azimuthal direction. For these simulations, no symmetry in the computa-
33 tional domain is assumed, and thus the whole domain is computed. Unfortunately,
', this causes a fourfold increase in the computational effort as compared to the
§ axisymmetric forcing discussed in Section 4.2, Therefore, only characteristic
‘:3 forcing studies have been carried out.

E Two different configurations consistent with the axisymmetric forcing

o studies have been simulated. The first configuration assumes that the jets in
™y the infinite array in the x-direction are all forced in-phase in the same
‘2 azimuthal direction. The second configuration assumes that every other jet in
?f the infinite array is forced in the opposite azimuthal direction. For the

j; former case, only a single impinging jet needs to be modeled by virtue of the
’ perlodic boundary condition at the fountain plane. For the latter case, two

I jets have to be numerically modeled.

s
J:

4.3.1 In-Phase Forcing

"g In these azimuthal simulations, the computational domain for a single ]Jet
- simulation was a 64x128x32 computational mesh., The computational domain is
y : bounded by the planes x = X and x = g in the x-direction and by the planes

- y = vy and y = Yy in the y-direction (see Figure 3). To be consistent with the
» previous axisymmetric forcing studies, we investigated azimuthal forcing at

Eﬁ the same Strouhal number of 0.47. A forcing level of 0.1U was used, and both
’,

”
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the H = 1.,5D and H = 3D cases were simulated. The azimuthal forcing function
is defined as
w'(x, y, t) = - A wy(r) sin ¢

where A = 0.1 and y = (211t/tp + 0)., Here, (r, 6) are the polar coordinates
relative to the jet axis. The forcing function defined above causes the per-
turbation velocity distribution at the jet exit to rotate at the characteristic
frequency of forcing. Although simulations with axisymmetric forcing would be
necessary to study the possible growth of azimuthal instabilities on axisym-
metric vortex rings, such simulations have not yet been performed. Here, we
shall concentrate on the effect of pure azimuthal forcing on the dynamics of
impinging jets. Although azimuthal forcing studies of both of the jet-to-
ground distance cases have been performed, in this section we discuss only
characteristic solutions that show the effects of such forcing very clearly.

Figure 54a shows the three-dimensional perspective of the total vorticity
surface for the H = 1.5D case. Here, the jet is forced at St = 0.47 in the
azimuthal direction. The jet is seen in the middle of the figure, and some
structures can be seen in the fountain plane. The azimuthal forcing causes
the velocity perturbation at the jet exit to spin in the clockwise direction.
This causes the impinging jet shear layer to shed in a helical structure.

This helical shear layer impinges on the ground and propagates to the outflow
and the fountain. The 1ifting of the helical vortex tube into the fountain is
seen in this figure. To visualize the helical nature of the jet shear layer,
we show in Figure 54b the three-dimensional perspective of the W for this
simulation. The helical vortex sheet impinging on the ground can be seen, and
the spiral vortex structure formed on the ground is also seen.

In general, the effect of this azimuthal forcing is not very evident for
the H = 1,5D case due to the close proximity of the two wall planes. The Jet
shear layer does not complete more than one helical turn before impinging on
the ground. This causes the vortex structure on the ground to be more
diffused. Due to azimuthal forcing, there is no symmetry in the flow field.
This is evident in Figure 55, which shows the y-vorticity in the x-z plane at
various y-locations. Figure 55a shows the y—vorticity in the y = 0 plane. In
this centerline plane we observe no vortex ring shedding from the jet as was
observed in the symmetric forcing case. Vortical structures are observed in
the wall jet and the fountain. These structures are associated with the
helical vortex tubes shed from the jet. Due to the helical nature of the
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vortex tube as it impinges on the ground, the vortex imprint is a spiral, and,
therefore, the vortex structure is not symmetric., The fountains at x = -1.5D
and x = 1,5D are not the same at any given instant. The recirculation of the
vortex into the jet is visible in this figure. The y-vorticity contours in the
x-z plane at y = 0.51D and y = -0.51D are shown in Figures 55b and 55¢, respec-
tively. These views are just outside the jet shear layer. The asymmetry of
the vortex pattern is again evident. Figure 55d shows the y-vorticity

contours in the x-z plane at y = -1.5D. The merging of the structures is
visible in this figure.

Although a large amount of data was collected for the H = 1.5D case, the
effect of the proximity of the ground plane to the jet exit plane caused the
details to be gmeared. The H = 3D case showed the structures more clearly,
so we will concentrate on that simulation. Figure 56a shows the three-
dimensional vorticity surface for the helical forcing of the jet at H = 3D.
The forcing was again at St = 0,47 and at a forcing level of 0.1U. This
figure clearly shows the helical shape of the impinging jet shear layer as it
propagates towards the ground, The 1lifting of the helical vortex into the
fountain is again evident. To visualize the spiral nature of the structure on
the ground plane, we show in Figure 56b the three-dimensional perspective of
the wg at a level of 3.0, This view shows the spiral shape of the
vortex tube and indicates how the vortex tube rises into the fountain.

The helical nature of the jet shear layer can be seenm in Figure 57, which
shows the time sequence of the x-vorticity in the y-z plane at x = 0 for
forcing at St = 0.47. The jet shear layer shows the undulation due to rota-
tion. No vortex rings as in the axisymmetric foreing case were observed. The
jet shear layer impinges on the ground and spreads to the outflow. No signi-
ficant coherent structure is seen near the impingement point in this y-z
plane. However, further downstream the vortex tubes can be seen. The size of
these tubes is not similar to the axisymmetric case. Since all the figures
shown in this report are plotted in the physical domain, the full mesh
simulation results are shown smaller. This is due to the 6Dx3D dimension in
the y-z plane for the azimuthal forcing study as compared to the 3Dx3D domain
for the axisymmetric studies. Regions of secondary vorticity are also observed
in the outflow direction forming just ahead of the primary structures, as was
seen in the axisymmetric cases. Both the primary and the associated secondary

regions show an indication of lifting off as the outflow is approached. This
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is again similar to the observations for the symmetric forcing case. The
x-vorticity contours in the x = -0.51D and x = 0.51D planes are shown in
Figures 58a and 58b. These figures show the characteristic asymmetry of the
flow field in the planes just outside the jet shear flow region.

The time sequence of the y-vorticity contours in the x-z plane at y = 0 1is
shown in Figure 59. The physical domain in the x-z plane is 3Dx3D. The
shedding of the helical vortex tube is observed in this sequence. The
structures in the two parts of the jet shear layer show the characteristic
tilt of the vorticity in the shear layer. The structures seen in these
figures are not independent but related to each other since the shear layer is
a continuously twisting helical structure. The 1lifting of the vortex tube
into the fountain is observed around the x = 0 and x = 3D boundaries. The
pattern is not symmetric and shows some evidence of merging of the vortices.

Figure 60 shows the time sequence of the y-vorticity contours in the x-2z
plane at y = -1.5D, and Figure 61 shows the corresponding time sequence in the
x-z plane at y = 1.5D. The two planes are halfway to the outflow, and the
flapping type of behavior of the fountain shown. Complicated structures are
observed, and also a definite indication of the merging process. This is
possible because the vortices in the fountain slow down as they climb into the
upwash and can therefore pair with the structures following them. Comparison
of the sequences in these two figures also shows the asymmetry of the flow
field in the fountain.

Figure 62 shows the time sequence of the y-vorticity in the x-z plane at
y = -0.51D, and Figure 63 shows the time sequence of the y-vorticity contours
in the x-z plane at y = 0.51D. These two planes are just outside the jet shear
flow region, so the jet shear region is missing. These sequences show the
bending of the fountain with the arrival of vortex structures. These figures
also show the characteristic asymmetry of the fountain. As the vortex rings
climb into the fountain, they start to pair and increase its size. There is
even an indication of multiple merging occurring in the fountain. Comparison
with figures for the corresponding axisymmetric forcing studies also shows the
difference due to azimuthal forcing.

The variation of the centerline velocity as a function of z is shown in
Figure 64 for the forcing cycle at St = 0.47. Unlike the case with axisym-
metric forcing, no sinusoidal variation 18 observed. The centerline velocity

of the jet begins to decrease from the value in the jet exit plane but then
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increases in the region of z = 0.75H. The velocity then rapidly decays as the
impingement point on the ground is reached.

Figure 65a shows the velocity vector field in the y-z plane at x = 0. The
impinging jet region shown in this figure corresponds to the x-vorticity
contours shown in Figure 57a., The velocity vector field in the y-z plane at
x = 1.5D is shown in Figure 65b. This view shows the characteristic fanlike
behavior of the fountain as it spreads up in the fountain axis. There is an
asymmetry in the flow field due to the helical forcing.

Figure 66a shows the velocity vector field in the x-z plane at y = 0 for
the same time shown in Figure 65. The corresponding y-vorticity contours in
thie plane are shown in Figure 59a. The impinging jet and the fountain regions
are shown in this figure. Due to the entrainment observed in this plane the
Jet appears to spread more as compared to the axisymmetric case. Figure 66b
shows the velocity vector field in the x-z plane at y = 1.5D, which 1s halfway
to the outflow. Figure 6la shows the corresponding y-vorticity contours in
this plane. The characteristic large-scale recirculation associated with the
vortex motion is also seen.

Although a secondary vorticity region was observed on the ground just ahead
of the primary vortex spiral, it is not as distinct as in the axisymmetric
case. To determine i1f the wall boundary layer is undergoing any unsteady
separation, we show 1n Figure 67a the pressure gradient vector field in the
x-z plane at y = 0. This view corresponds to the view shown in Figure 66a.
The secondary region is nearly steady in this case, and the pressure gradient
field shows a region of change in the gradient direction around x = +0.75D.
The rise in pressure at the impingement point and the wall jet collision re-
gions is also observed in this figure. Figure 67b shows the pressure gradient
vector field in the y-z plane at x = 0 corresponding to Figure 67a. This view
shows the region z < 0.5 and shows the outflow direction. The rise in
pressure at the impingement point is seen in the middle of the figure. There
are regions of change in the pressure gradient direction indicating the possi-
bility of separation of the wall shear layer. Figure 67c shows the pressure
gradient in the region close to the ground. The change in the pressure
gradient direction 18 clearly observable in this figure.

Figure 68 shows the velocity contours in the x-y plane at various
z-locations for this simulation. These figures show the velocity contour in

the jet region quite clearly, In the z = 0.75D plane, the spread of the jet
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:¥E as it approaches the ground is observed. The negative contours indicate flow
ﬂ:& into the paper, and the positive contours in the fountain axis show spread of
{ the fountain. In the z = 1,5D plane, the jet is more circular, and the
; i: asymmetric spreading of the fountain due to helical forcing is also seen. The
:E: z = 2.25D and the z = 2.98D planes show the velocity contours in the jet

@;: reglon as mostly circular. The upwash of the fountain is much weaker in these
1 } two planes. A closer observation of the contours in this figure shows that
;i_ the peak in the jet is not in the same plane but is offset in each figure.
f:: This is indicative of the helical nature of the forcing, which causes the jet
a:%. to spin and the jet core to become offset from the center.

%ﬁ: 4.3.2 Out-of-Phase Forcing

i;g In these simulations the computational domain includes two jets. This
52; allows simulating flows in which neighboring jets are forced independently. A
‘.. 64x64%x32 computational mesh is used. The computational domain extends six jet
J:& diameters in each of the x and y directions, and three jet diameters in the z
j;j direction. A plan view of the domain 18 depicted in Figure 3. The forced

iiﬁ solutions are computed from an initial steady state solution.The results
{ presented here are obtained at the end of twelve cycles of forcing at a

oy frequency corresponding to a Strouhal number of 0.47.

:;: Computations for jets subjected to azimuthal forcing are performed for

E: various forcing configurations. In these computations, the jet located at the

station x = xL (see Figure 3) experiences a perturbation velocity given by

s

P 4

-

wL'(x, ¥y, t) = - A wo(rL) sin ¢L

’
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GL) are the polar coordinates relative to the jet axis. The jet
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L’
located at the station x = x, (see Figure 3) experiences a perturbation
velocity given by

wk'(x, ¥, t) = - A wo(rR) sin MR (38)
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and (rR, GR) are the polar coordinates relative to the jet axis while ¢ is the
phase angle shift between the two jets. The sign of eR is taken to be positive
for the case of clockwise (CW) forcing and is taken to be negative for the

case of counterclockwise (CCW) forcing. Figure 69 is a top view indicating
different configurations for the azimuthal disturbances applied at the jet

exits of the two neighboring jets centered at the positions x = x. and x = Xp .

Each number in this figure indicates a specific disturbance velocfty, or a
specific ¥ value. In addition to the set of solutions obtained by imposing
azimuthal forcing at the jet exits, two solutions have been obtained as
reference solutions. They are an unperturbed flow solution and a solution
obtained by imposing axisymmetric forcing at the jet exits.

The fountain created by the two neighboring jets is located close to the
plane x = Xp (see Figure 3) in the middle of the computational domain. This
fountain will be referred to as the central fountain., A second fountain is
generated at the periodic boundaries (x = X, X = x2) of the computational
domain. This fountain will be referred to as the side fountain. In general,
these two fountains will not have the same properties since the disturbances
experienced by the two neighboring jets to each of them are not the same. The
vortical structures in the undisturbed jets are shown in Figure 70 where the
surfaces shown have a vorticity level |wl of 2.1. The vorticity levels in the
volumes enclosed within these surfaces are greater (higher magnitude) than
that of the surface. The figure shows the vortical cylinders composed of the
jet ghear layers. In the case of a single impinging jet, the vortical cylinder
expands on the ground plane into a circular disc. However, in the present case
of a row of impinging jets, the circular discs expand until they collide.

Then they expand upwards as vortical sheets in the fountain. The vortical
structures at the top plane above the fountains are due to the impingement of
the fountain on the upper plane.

The effects of perturbing the jet exit conditions are investigated below.
Imposing axisymmetric velocity perturbations at the jet exits given by
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“t% results in vorticity rings, propagating from each of the jet exits, which

%Tg alternate in the sign of the azimuthal vorticity W associated with them.

S As the vortical rings impinge on the ground plane, they propagate outwardly away
ejif from the jet axis which leads to an increased radius and a reduced strength.
'ikf In the fountain region, the rings expand upward, Figure 71a shows the vortical
o~ rings with azimuthal vorticity levels of -3.1 at their surface. The vorticity
i{x levels in the volumes enclosed within the surfaces shown are lower (higher
,:&: magnitude) than that at the surface. This vorticity level is chosen here to
:E{E be relatively low to suppress the main unperturbed vortical structures. The
A vortical riangs shown in the figure coincide with the cores of the vortical
e rings which have negative azimuthal vorticity. Vortical rings which have

';lg positive azimuthal vorticity are not shown. Vorticity rings in the ground

-}:j plane with large radii and those in the fountain are not apparent in the

{;;. figure since vorticity levels in these rings are higher than the value

- specified here.

%;f Imposing azimuthal velocity perturbations at the jet exits given by

;j;: Equations (38) and (39) with ¢ = 0, corresponding to a clockwise-clockwise
ijt disturbance and a zero phase shift, results in two helical vorticity tubes
.:J: propagating from each of the jet exits to the ground plane. The azimuthal
::2: vorticity in one of these helical vortical tubes is positive while it is

:::: negative in the other one. As the helical tubes impinge on the ground plane,
;:5 they propagate away from the jet axis. In the fountain region, the tubes

.;i; expand upward. Figure 71b shows the helical vortical tubes with azimuthal
‘:-i vorticity levels of -=3.1 at their surface. The vortaical tubes shown in the
{;: figure coincide with the cores of the vortical tubes which have negative azi-
-._; muthal vorticity only. The corresponding vortical tubes for imposed azimuthal
A velocity perturbations at the jet exits given by Equations (38) and (39) with
s;i? $ = 0, corresponding to a clockwise—counterclockwise distrubance and a zero

:? phase shift, are shown in Figure 7lc.
:4;5 Figure 72 presents y-vorticity contours in the plane of the jets (y = yj = 0)
,t:? for the undisturbed jets, the axisymmetrically forced jJets and the six

X
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azimuthally forced jet configurations indicated in Figure 69, The dashed lines
indicate negative vorticity levels, while the solid lines indicate positive
vorticity levels. For the two azimuthally forced cases in which $ = 0, the
forcings applied in the plane y = 0 at the two jet exits are identical.

Figures 72¢ and 724 indicate that the disturbances remain identical within the
jets in this plane. For the two cases in which ¢ = 7m/2 the forcing applied at
the exit of the right jet lags that applied at the jet exit of the left jet by
a quarter of a cycle. A comparison between Figures 72e and 72f indicates a
similar phase shift in the positions of the vortical structures generated
within the jets by these forcings. For the two cases in which ¢ = 7w, the
forcings applied in the plane y = 0 at the two jet exits are symmetric relative

to the plane x = x Figures 72g and 72h indicate that the disturbance remains

F.
symmetric within the jets in this plane. Although the initial development of

Ve o R s
fvﬁ"v.",*',‘) [ ] g\‘.‘.‘-“--

the left jets is the same in all these cases, deviations become apparent as
the jets approach the ground plane. These deviations are due to the influence
of the right-hand jet, through the fountain created by the collision of the
wall jets. Figures 72a through 72h indicate that the general characteristics
of the fountain in the unperturbed flow and the axisymetrically perturbed jets

(

are ghared with those of the CW-CCW azimuthally perturbed flows. Im these

cases, we note that the fountain is confined to the region midway between the
jets. The lateral interaction between the jets and the fountain seems to be
weak. The main influence of the fountain on the jets occurs through the
influence of the wall jet on the upper wall, generated by the fountain
impingement. There 1is an indication of entralmment of this wall jet into the

Ll ..‘."-

impinging jet. This can modify the jet spreading characteristics. On the

-

other hand, the CW-CW azimuthally perturbed flows develop fountains that tend
to extend farther in the x direction towards the neighboring jets. This is an

« @,

indication that the spreading rate for the case of the CW-CW forcing is larger
than that for the CW-CCW forcing. The main influence of the fountain on the
impinging jets is due to lateral inter-ction and not to the influence of the
wall jet at the upper plane. The plane y = 0 for the CW-CW forcing case with

Al AN ANNST,

o

é = 7, shown in Figure 72g, 18 a special plane in which the flow 1s symmetric
about the line x = Xg. In this particular plane, some of the features ob-—
served are not typical of CW-CW forcing. The CW-CCW forcing case with ¢ = =

is a special case since it 18 the only case in which the plane x = Xp is a
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plane of symmetry. This case shares the symmetry about this plane with the
unperturbed flow and the axisymmetrically forced flow. This symmetry has a
very strong influence on the fountain characteristics. The figures indicate
that, among all the azimuthally forced flows, fountain characteristics for the
CW-CCW forcing with ¢ = 7 (Figure 72h) are the closest to those of the two
reference cases (Figures 72a and 72b).

Figures 73a through 73h and 74a through 74h present y-vorticity contours
in the planes y = -1.5D and y = 1.5D, respectively, for the same cases
presented in Figure 72, While the central and side fountain characteristics
in Figure 72 were in general agreement, Figures 73 and 74 indicate some
dissimilarity in these characteristics in certain cases., The discussions
presented here will be limited to the central fountain characteristics unless
otherwise gpecified. The individual vortical structures apparent in Figures 73
and 74 are cross-sections of vortical tubes moving upward into the fountain.
The figures indicate that the individual structures tend to merge. Distinct
features are observed among solutions resulting from CW-CW forcing and among
solutions resulting from CW-CCW forcing. In the case of CW-CW forcing the
vortical structures move upward in a direction inclined to the plane x = Xps
towards the left, in the negative x direction at the plane y = -1.5D, At this
plane, the vortical tubes originally shed by the left jet, with negative
vorticity, move toward this jet resulting in a reduction of vortex "ring”
radius and an increased vorticity strength. The individual vortex structures
merge into a larger structure nearly circular in its cross sectional shape
extending to the left. The vortical tubes originally shed by the right jet,
with positive vorticity, move away from this jet resulting in an increase of
vortex "ring"” radius and a reduced vorticity strength. The positive vorticity
region tends to branch to the right towards the jet at which it originated and
to the left above the negative vorticity region. At the plane y = 1.5D, the
vortical structures move upward in a direction inclined to the plane x = Xos
towards the right, in the positive x direction. At the plane y = 1.5D, a
similar picture develops to that observed in plane y = -1.5D, however, with the
positive and negative vortical tubes reversing their role. Vortical tubes with
negative vorticity tend to move away from the jet at which they originated,
while vortical tubes with positive vorticity tend to move toward the jet at
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S;? which they originated. This role reversal indicates that significant changes
A occur in the vortical tubes along their length in the fountain. Figures 73
i;;. and 74 indicate that the vortical structures spread in a relatively wide region
iQ sideways in the x-direction, however, they extend to relatively low levels
lki upward. The symmetry observed in the plane y = 0 about the plane x = X, for
) 3 the fountaln developing in the case of CW-CW forcing with ¢ = 7 is no longer
A observed in the planes y = -1.5D and y = 1.5D.
i&g In the case of CW-CCW forcing, the vortical structures move upward in the
CRE general direction defined by the plane x = Xpe They spread in a relatively
tur narrow region sideways in the x direction. 1In the vertical direction the
et vortical structures extend upward to levels in the plane y = 1.5D higher than
»*i those in the plane y = -1.5D. The strong similarity observed in the plane
ij% y = 0 between the fountain developing in the case of CW-CCW forcing with é =1
o and the two reference solutions continues to be apparent in the planes y = -1.5D
YN and y = 1.5D.
ig; The results presented here for the azimuthal forcing are limited to a
Jﬁ single time, i.e., they correspond to a particular 8 value which we denote as
i- Bo’ where 2mt/t_ = constant + B. A gecond set of solutions half a cycle later
sy at B = Bo + m for the central fountain may be constructed from a knowledge of
;f: the side fountain solution at 8 = BO. This solution for the central fountain
.(j at 8 = B8 + mis obtained at y = + Y by applying the transformation
‘ (x = x) » - (x - xp)
L5
‘:’ to the side fountain solution obtained at y = +Yfor 8= 8o Moreover, the
Ny side fountain provides solutions for several additional cases. For example, in
2us the case of CW-CW forcing with ¢ = n/2, the side fountain is equivalent to a
13& central fountain resulting from CW-CW forcing with ¢ = -7/2, at B = By ~ /2.
::E Similarly in the case of CW-CW forcing with ¢ = 7 the side fountain ir equivalent
LY to a central fountain resulting from CW-CW forcing with ¢ = -m, at 8 =8 - ™
;‘T In view of the new information obtained from the side fountain, it is appro-
. : priate to review Figures 72 through 74 and to identify two solutions for each
] forcing cycle. It is apparent that the general shape of the fountain structure
ﬁ. remains nearly fixed. Within a forcing cycle the inner details of the fountain
ﬁé. structure will slowly vary due to the movement of the vortex tubes. However,
ﬁé- it 18 noted that the individual sizes of the cross section of these tubes are
B
L
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E:E smaller than the corresponding tubes in the jet, due to the stretching that
;:: takes place. Secondly, the flow velocity in the fountain is smaller than that
-;” in the jet. This indicates that changes in vortical structures in the

;%{. fountain occur at a much slower rate than in the jets. These observations are
;ﬁ also confirmed by Figures 75 and 76 where vorticity contours are presented at
ii, different times for a complete forcing cycle. The figures are presented for

. the two planes y = 0, and y = -1.5D for the case of CW-CW forcing with ¢ = O.
‘;3 The y—-vorticity contours presented for different x-z planes have indicated
‘L:- that common features are shared among the members of each of the two sets

:ﬁ: investigated (clockwise-clockwise disturbance and clockwise-counterclockwise
i disturbances). An investigation of the y~vorticity contours in the x-y planes
H;{ leads to a similar conclusion. These contours for a single case (¢ = 0) from
f¥§ each of the two sets are presented in Figures 77 and 78 with the corresponding
‘53 contours for the two reference solutions. The contours are given at the two
'.? planes z = 1D and z = 1.5D. A comparison between the case of axisymmetric

N forcing and the undisturbed case indicates relatively high vorticity levels of
2;f |wy| within the jets for the axisymmetric forcing case at z = 1D and lower

‘{; levels at z = 1.5D. This simply indicates the presence of a vortex ring with

negative azimuthal vorticity at the plane z = 1D and the presence of a vortex
ring with positive azimuthal vorticity at the plane z = 1.5D. As a result,
the basic vorticity levels in the jet are augumented at the first plane and
weakened at the second plane. The vorticity distribution in both the

clockwise~clockwise and the clockwise-counterclockwise cases differ from the
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ar previous two reference cases. However, the similarity between the reference
v
:: cases and that of the clockwise-counterclockwise disturbance is greater than
\ ]
~5 that between the reference cases and that of the clockwise-clockwise
“w
o
o

disturbance. In Figures 77d and 784, showing the effect of a clockwise-

counterclockwise disturbance, the fountain is nearly symmetric. Its direction
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only deviates slightly from the direction of the undisturbed fountain. That
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is, the y-z plane midway between the jets is basically the plane going through

.

the middle of the fountain. There does not seem to be strong interaction

o between the fountain and the jets. The jets are well defined at the upper
ji; plane (z = 1.5D) and as they reach the lower plane (z = 1D) they are still
%ﬁt well defined. In Figures 77c and 78c showing the effect of clockwise-
f4 clockwise disturbance, the fountain 18 no longer symmetric about the y-z plane
N
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at mid-distance between the jets., It is, however, inclined to that plane.
There seems to be interaction between the fountain and the jets as indicated
by the vortex structures connecting them. The effect of the fountain on the
jets 1s relatively strong. The well-defined jet vortical structure at the
level z = 1.5D near the jet exit becomes illdefined as the jet reaches the
plane z = 1D.

The main features for the different forcing conditions were concluded from
vorticity contour plots. The same features are apparent in velocity vector
plots. For the two reference solutions, the CW-~CW solution with ¢ = 0 and
the CW-CCW solution with ¢ = 0 velocity vector plots are shown in the plane
x = xp (see Figure 79), the planes y = O (see Figure 80), y = -1.5D (see
Figure 81), and y = 1.5D (see Figure 82). Figure 79¢ indicates that the

fountain deviates from the plane x = x_ except near y = 0 for CW-CW forcing.

Figure 794 indicates that some deviatizn from the plane x = Xp is also present
for CW-CCW forcing, however, to a much lesser extend. Figures 80 through 82
indicate features similar to those observed from the vorticity plots. These
figures indicate that the impingement of the fountain on the upper wall is
relatively weak for the case of CW-CW forcing and that it is relatively weak
for the case of CW-CCW forcing at y = -1.5D while it 1s relatively strong for
the same case at y = 1.5D.

The results presented up to this point present a clear picture of the
fountain characteristics. Three main categories may be identified:

(1) Undisturbed Flow and Axisymmetric Forcing

Here the fountain is symmetric about the plane x = Xp and about the
plane y = Yy The fountain occupies a relatively narrow region near the

plane x = x indicating relatively weak lateral spreading. There is

F’
relatively little lateral interaction between the fountain and Jets.

at

However, the impingement of the fountain on the upper plane is relatively

.
5

+ AN .

strong. The wall jets which develop on the upper wall due to this

WaAs

impingement are entrained into the impinging jets near the Jet exit. The

main influence of the fountain on the jet occurs through this entrainment,

(2) Clockwise-Counterclockwise Azimuthal Forcing

Here the fountain 18 nearly symmetric about the plane x = Xp. However,
it is not symmetric about the plane y = Y. The fountain occuples a
relatively narrow region near the plane x = Xps indicating relatively

weak lateral spreading. There is relatively little lateral interaction
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between the fountain and the jets. The impingement of the fountain on the i
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upper plane 18 relatively strong for positive y-values where the directions
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of the azimuthal forcing at the jet exits is such that they both are
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directed towards the plane x = x The impingement of the fountain on the

F.
upper plane is relatively weak for negative y-values where the directions
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of the azimuthal forcing at the jet exits is such that they both are directed

away from the plane x = x The wall jets that develop on the upper wall

F.
due to the fountain impingement are entrained into the impinging jets near
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the jet exit. The main influence of the fountain on the jet is due to this

a
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entrainment.
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(3) Clockwise-Clockwise Azimuthal Forcing

CEd
J
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Here the fountain is inclined to the plane x = x For negative y-values,

':5{ P A

F.
the fountain is directed towards the negative x-axis that ccincides with

5 .
"t':‘l.

the clockwise direction there. For positive y-values, the fountain is

<

directed towards the positive x-axis that coincides with the clockwise

3L

direction there. The fountain spreads in a relatively wide region in the

direction of the neighboring jets. The impingement of the fountain on the

SiNANE

upper wall is relatively weak. The main influence of the fountain on the

4,

U MY Lo

jets 18 due to their lateral interactions. The fountain generated in this

Y )

5 case has the strongest influence on the jets among the three categories.

s This is due to the strong lateral spreading of the fountain,

.
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Based on kinematic considerations explanations may be found for the results

').: L‘ ,.‘

observed. Figure 83 shows the vortex tubes in the wall jets as they approach

T,
5
Ja)s,

the fountain base. For the case of axisymmetric forcing, these tubes are in

oy

¥

the form of rings that are nearly circular. The spiral shape of the vortex

Py
L“l

tubes in the cases of azimuthal forcing results in the relative positions shown

s in Figure 83a for the tubes as they approach the fountain base for the case of
e CW-CW forcing and the corresponding relative positions shown in Figure 83b for
-...

'3:} the case of CW-CCW forcing., The figure 1s shown for the case ¢ = m. While the

- !\l"‘

- @ midplane between the tubes at the base of the fountain in both the axisymmetric
S

!x,: forcing case and in the case of CW-CCW forcing is the plane x = Xps the

1;: midplane in the case of CW-CW forcing 18 a plane inclined to the plane x = Xp
J-

ﬁj{ to the right for positive y values and to the left for negative y values. As

LS8

T the vortex tubes ghown in Figure 83 at the base of the fountain expand upward
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into the fountain, the configurations indicated in Figure 84 result. The
circular vortex tubes resulting from axisymmetric forcing touch the fountain
base initially at the plane y = 0. As these tubes are convected upward iaoto
the fountain, they take the shape of arcs symmetric in the y—-direction about
the plane y = 0, while the plane x = Xp becomes a plane of symmetry between
the two tubes. In the case of CW-CW forcing, Figure 83a indicates that the
end c of the right vortex tube segment and the end b of the left vortex tube
segment reach the plane x = Ip first, then the end d of the right vortex

tube segment and the end a of the left vortex tube segment reach the plane x =
is the plane of symmetry for the fountain generated

X The plane x = x

bg the basic undistribed flow. The inclined vortex tubes shown in Figure 83a
will tend to modify the fountain plane. The final plane will be somewhere
between that defined by the unperturbed flow and that in the direction defined
by the perturbation vortex tubes. Therefore, the plane x = xp should no
longer be the reference plane, strictly speaking, however, it is used here for
the purpose of showing some qualitative characteristics. Assuming that the
vortex tubes generated by CW-CW forcing expand upward at the plane x = xF,
then the relative positions of the tubes will be as shown in Figure 84b. We
note that the average height of the structure composed of both tubes remain
fixed along the y direction. Finally, the vortex tube segments resulting from
CW-CCW forcing will collide at the base of the fountain, as shown in Figure
83b. The ends b and d will reach the fountain base before the ends a and c.
The resulting configuration as the tubes expand into the fountain is shown in
Figure 84c. Figures 84a through 84c show, in a simple manner, the relative
positions of the vortex tubes resulting from different forcing configurations.
The results presented earlier indicated that the vortex tube interactions are
more complex than presented here, including recombination of vortex structures
and deformation of the vortex tube shapes. Nevertheless, the simplified
sketches of Figure 84 do allow us to explain some of the results associated
with the different types of forcing.

The main characteristic shared by Figures 84a and 84c is the fact that the

plane x = x_ 18 a plane of symmetry. Consequently, the flow is restricted

F
in the x direction. This common factor explains the great similarity between
the axisymmetric forcing results and the CW-CCW forcing results with ¢ = m,
previously presented. As shown in Figure 84b, the symmetry about the plane

x = x_ 18 nonexistant except locally at the plane y = 0. In the plane y = 0,

F
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Figure 72 indicates a great deal of similarity between the case of CW-CW
forcing with ¢ = 7 and the case of axisymmetric forcing. In the planes
y = -1.5D and y = 1.5D, however, where no symmetry exists, the differences
between the two cases are apparent in Figures 73 and 74.

For values of ¢ other than 7, the relative vertical positions of the
two tubes shown in Figures 84b and 84c slightly changes. The main effect in
Figures 84b would be to displace the local plane y = Ygs at which symmetry
exists about the plane x = Xp, to another near by plane. The role reversal
observed at stations y = -1.5D and y = 1.5D for the vortical tubes generated
at the left and right jets for the case of CW-CW forcing can be explained by
Figure 84b where the relative positions of the tubes are reversed at these two
planes. In the case of ¢ = 7, the plane y = 0 i3 the plane about which an
antisymmetry exists in the relative positions of the vortex tubes. A comparison
between Figures 73g and 74g indicates that this antisymmetry in the shapes of
vortex structures does exist in planes y = -1.5D and y = 1.5D. For the cases
=0 and ¢ = 1/2, however, the point at which the two tubes of Figure 84b
coincide is no longer at the position y = 0. Therefore, the planes y = -1.5D
and y = 1.5D are not the planes at which the relative positions of the tubes
are exactly reversed. Therefore, a general reversal in the roles of the
vortical structures assoclated with the tubes is observed at the planes
y = -1.5D and y = 1.5D, however, a complete antisymmetry is not observed. This
is indicated by a comparison of Figures 73c and 74c for ¢ = 0 and 73e and 74e
for ¢ = /2. The main effect in Figure 84c of specifying ¢ values other than

T 18 to destroy the symmetry about the plane x = x However, the two vortex

tubes do remain parallel even though a relative shfft in their vertical posi-
tions occurs. Therefore, the vortical tubes originating from two neighboring
jets mesh together in an organized fashion in the fountain generated between
the jets. This organized meshing of the vortex tubes in the case of the CW-CCW
forcing is the common feature shared by all members of this group regardless

of the phase ghift. In the case of CW-CW forcing, the vortex tubes generated
at the two neighboring jets are inclined in different directions as indicated
in Figure 84b. This relative position does not allow the organized meshing of
the vortex tubes, resulting in the relatively unorganized fountain characteris-
tics observed in the different CW-CW forcing cases. The inclination of the
vortex tubes shown in Figure 84c coincides with the observed results, which

indicates that for CW-CCW forcing, vortical structures reach a relatively high
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level at the plane y = 1.5D while they reach a relatively low level at the

oL

plane y = -1.5D. For the axisymmetric forcing, we have assumed in our compu-

tations a zero phase shift. The effect of using a phase shift value other than

AN

zero would be to vertically displace the relative positions of the two vortex
tubes shown in Figure 84a. The maln difference between this case and the

CW-CCW forcing with ¢ ¥ 0 would be the symmetry across the y = O plane in the

A, 8

axisymmetric case and the nonsymmetry for the CW-CCW forcing. Other than this
difference, both flows are expected to be similar with no symmetry across the Xp

plane, however, with an organized meshing of the vortex tubes in the fountain.

SuE AN AT ALY

Three-dimensional views of the vortical structures resulting from axisym-

metric, clockwise-clockwise and clockwise-counterclockwise forcings with ¢ = O

are presented in Figures 85a-85¢c. As in Figure 70, the surfaces shown in these

v
LI

figures are those with a vorticity level given by Igl = 2.1, In Figure 85a,

it 1s apparent that the vortical rings resulting from axisymmetric forcing

deviate from their initial axisymmetry, as they move downwards in the jets, due

L

to the influence of the fountain. This is particularly apparent in the rings

[y g™

with positive wg vorticity. The vorticity in these rings tends to cancel the

negative wg vorticity assoclated with the unperturabed flow. The figure

~—

indicates that the levels for lgl are higher in the jet "sides” facing the
fountain than in those "sides" facing the outflow boundaries. The near planar
vorticity sheets in the fountain are a common feature between Figures 70 and
85a. The vortical structures in Figure 85b (CW-CW forcing) appear to be no

longer planar in the fountain region. A three-dimensional branching of the

o vortical tubes i1s observed in the fountain region, with some branches extending
to the jets. The vortical structures in Figure 85¢ (CW-CCW forcing) are inter-

mediate in nature between thoge of Figures 85a and 85¢. They are no longer

s

planar, and some vortical tubes are seen to be breaking away from the main
fountain structure, however, the structures are still confined to the region
mid-distance between the jets and the strong branching and three-dimensional

character of Figure 85b 18 not observed here.

PO

4.4 Randomly Forced Impinging Jets

In the previous three sections we investigated the effects of coherent

forcing in the development of the impinging jets. In all the previous

RN SR AEN

calculations, we assumed that the flow field is laminar initially and is then
perturbed at the prescribed frequency. Although complicated vortex ring
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;ﬁ{: propagation and merging processes were observed, they were all controlled by

5:&8 the forcing frequency(ies). No attempt was made to model the turbulent flow

e field. Since the present numerical approach utilizes large-eddy simulations

;};: with subgrid-scale modeling, it is expected that all scales within the grid

f;;k resolution can be resolved. Thus, the observation of small-scale structures
jii in the flow field during axisymmetric and azimuthal forcing is realistic.

‘;; However, the origin of all the structures observed in the previous coherent
N forcing studies is dependent on the initial conditions. Therefore, if the

; {' initial condition is random in origin, the development of the flow field will
‘i: be random in general, and any formation of large-scale structures in the
- domain will be the result of natural growth of the instability imbedded in the
oA random initial field. Such turbulent simulations have been the main avenue of
Ej. research into turbulent flows in mixing layers and jets, A recent study by

:ﬁé Childs et al.8 investigated the collision of turbulent wall jets by

:' introducing random disturbances into the mean profile at the inflow. 1In the
iti present study we shall discuss some results obtained when the impinging jets
:;f in the present case were forced in a random manner.

:¥7 In Section 2.3 we presented the rationale behind the random field

(\' generation. The random velocity field so generated can be imposed in the

- inflow and the computations continued. For realistic simulations, the full
%:E computational domain used for the azimuthal forcing needs to be used for

-:5, realistic random field development. However, this would require an extensive
:3‘ computational effort and, therefore, has not been studied in great detail.
Tf? Some simulations have been performed using random forcing initial conditions
ixi under some simplifying assumptions. The random field is generated according
:- to the formulation discussed in Section 2.3, We then assume symmetry in the
;“ x- and y-directions for the computational domain in a manner similar to the
fﬁi axisymmetric forcing study. The random field 1s then imposed on the quarter
'i? plane of the jet exit such that only the lowest Fourier modes are present.

»é;~ The symmetry assumption was used to reduce the computational effort required
" to understand the effects of forcing at random frequencies. This assumption
:;‘ essentially reduces the problem to simulating the flow with multiple

::2¥ frequencies that are generated randomly according to the rules discussed in
:tf Section 2.3. Therefore, the simulation using symmetry in the domain 1is

ﬁf. strictly not random. But the jet flow can be studied under such assumptions to
;;i understand the dynamics of vortex formation resulting from random excitation.

o
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A simulation was performed using the symmetry assumption for Re = 1000 and

AL A,

o the H = 3D case. .he random field in a 32x32 domain was generated for a
X simulation time of length T under the assumption of symmetry in the x- and ‘
y—directions. This random field is then imposed in the quarter plane of the l
jet at its exit location such that at each time step a new random field is
added to the jet exit velocity profile. The computations shown in this simu-
f lation assumed a relatively high turbulence level of 10 percent. This was
h; required to overcome the inbuilt dissipation of the numerical scheme and the

: damping effects of the ground plane that would suppress the natural growth of
. the random modes. It was determined that, for low-level forcing, a very long

period of time integration has to be performed to obtain any significant f

:j statistical information. To avoid the large computational time required for
such simulations, we have utilized a high forcing level of 10 percent. This

; is, of course, consistent with the study of coherent forcing studied in the
!! previous sections. It must also be mentioned that the results presented in
i this section are still somewhat preliminary, since there are various variables
that need to be looked at for simulating the random field as discussed in

2 Section 2.3.
{ ) Figures 86a through 86c show the characteristic x-vorticity contours in
if the y-z plane at three different times. This view shows the x = 0 plane,
which is the centerline plane. The figures correspond to the instantaneous
vorticity field after random forcing was initiated from steady-state initial

conditions. There is no clear indication of the shedding of a large-scale )

-~
)

structure in the jet shear layer. This i8 expected, since the forcing at

random does not necessarily excite the jet at the jet-preferred mode.

AN
LI

However, there 1s an indication of a vortical structure in the jet shear layer

a,

forming just before impinging on the ground plane. As the jet shear layer

Tl

curves outwards and propagates towards the outflow, there 18 the formation of

2el Y
et

a structure in the wall jet region. This vortex seems quite coherent further

S

downstream and then shows signs of lifting off from the ground. Figure 86b

a."’

shows on careful study that there are pcssibly two vortex cores in the

¢4

structure impinging on the ground. Evidently, random forcing does cause the

formation of large scale structures on the ground. This observation is in

 {(_

agreement with experimental observations of random excitation of jets. In the

experiments, the jet when forced randomly causes the most unstable mode to

'\r\l.l.\
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grow naturally from the random background. This growth of the most unstable
waves causes the jet shear layer to undergo rollup and then pairing until the
large-scale structure is formed at the jet-preferred frequency. In free jets,
this large coherent structure is usually formed within four jet diameters
downstream. Since, in the present simulation, the jet height is three jet
diameters, it is possible that the jet-preferred mode i{s not reached before
the jJet impinges on the ground.

The appearance of gsecondary vorticity is similar to the coherent forcing
case and is observed around y = 2D. The downstream propagation and the
lifting of the primary-secondary vorticity is again observed. These vortices
maintain their coherency even at x = 0.51D. as shown in Figure 86c, indicating
that these are vortex rings. The distribution of the y-vorticity in the x-z
plane is shown in Figure 87. Figure 87a shows the y = 0 plane showing the jet
and the fountain region in the center plane. There is evidence of the vortex
cores in this figure, and the recirculation of the fountain on the top wall is
also observed. Vortical motion in the fountain is visible, indicating that
quite a few structures have been entrained into the fountain. Figures 87b and
87c show the y-vorticity contours ir the x-z plane at y = 0.51D and y = 1.5D,
respectively. 1In these planes we see the characteristic upwash of the fountain
and the impingment on the top wall. In general, the view in these figures is
quite similar to the axisymmetric simulations.

To show that the observed structures in Figures 86 and 87 have any spanwise
coherency, we present in Figures 88a and 88b, respectively, the x- and
y-vorticity contours in the x-y plane at z = 0.14D. This plane is just above
the ground and shows the characteristic vortex rings on the ground, indicating
that the structures formed in these simulations are also quite coherent.

A simulation was also performed in which a coherent mode at the frequency
corresponding to St = 0.235 was added to the random initial field. The
results indicate that the coherent mode organizes the randomly excited
vortices into larger and more coherent structures. The fountain 1s also more
coherent indicating that perhaps coherent forcing can be utilized to control
the behavior of the fountain.

It seems from this calculation that the forcing studied using axisymmetric
forcing 1is quite reliable for understanding the dynamics of the large vortex
rings on the ground and the formation of the fountain. The limitations
imposed by assuming symmetry in the x- and y-directions can be relaxed without

any problem except the increase {n computational effort.
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5. CONCLUSIONS

The results presented in .:is report catalog the findings of the study of
impinging jets under both coherent and random excitation., These results have
been obtained using a three—dimensional, incompressible Navier-Stokes solver
that was developed to simulate the problem of an infinite row of jets impinging
on the ground. This problem contains the essential physics of the case of a
VIOL aircraft hovering near the ground. The characteristic flow field of the
exhaust of the engines near the ground is very complex containing motion in a
wide variety of scales. The approach used here applies the large-eddy
simulation techniques to resolve scales above the grid resolution and uses a
subgrid model to simulate the cascade of energy into the unresolvable scales.
The grid resolution used in these simulations is the largest possible using
state-of~-the-art computers such as the CRAY XMP without causing a significant
increase in cpu time. Although the present grid resolution 18 insufficient to
resolve the finer details of the small-scale motion, especially in the wall-
bounded shear layer reglons, it 18 quite adequate to resolve the large-scale
motion. Therefore, the present study focuses on the motion and dynamics of
large-scale structures that have been experimentally observed in jet flows.
To investigate this complex physical process, we perturb the mean Jet exit
velocity profile by superposing a prescribed disturbance. The resulting
motion of the impinging jet is simulated using a time- and space-accurate
numerical scheme. To characterize the motion due to different families of
possible disturbances, we have studied separately the effect of forcing the
impinging jet using axisymmetric, azimuthal and random disturbances. The
principal advantage of studying the motion of forced jets is that the forcing
suppresses the natural instability of the jet, and the motion of the large
structures in the jet 1s governed by the {mposed excitation. Therefore, the
effect of external excitation can be studied in detail.

Since the primary interest in this study was to investigate the motion of
large-scale structures in the flow, we force the jet at frequencies cor-
responding to a Strouhal number range of 0.23 to 0.47. This range falls in
the range of the jet-preferred mode instability observed in a wide variety of
experiments. It has been pointed out that, in jet flows, the formation of the
large-scale gtructures occurs at the so-called jet-preferred frequency that

corresponds to a Strouhal number range of 0.24 to 0.64.28 Therefore, to
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simulate the motion of these large-scale structures, we force the Jet in the
above-mentioned range.

An enormous amount of data has been collected on the three—dimensional
flow field for various forcing conditions during the course of the present
investigation. Due to lack of time and resources, all the data has not yet
been analyzed in detail. However, the results presented in this report
provide sufficient information to characterize the large-scale motion caused
by coherent excitation. To visualize the formation, motion, and breakdown of
the large-scale structures, extensive use has been made of the spatial and
temporal variation of the three components of the vorticity vector. Both
two-dimensional and three-dimensional representations have been used to study
the structures in the flow.

The results obtained from the study of axisymmetrically forced impinging
jets indicate both quantita*ive and qualitative agreement with some experi-
mental observations. A large axisymmetric vortex ring i1s shed by the jet at
the frequency of forcing that impinges on the ground and propagates above the
ground. The calculated phase speed of the impinging vortex ring is similar to
the experimental value. During propagation on the ground, a region of
secondary vorticity appears just ahead of the primary vortex core, again in
agreement with the experimental observation. Further downstream this
secondary vorticity rolls up into a vortex ring of opposite rotation, and
there is some indication that the counterrotating vortex rings start to lift
off tne ground due to their mutually induced velocity fields. This has also
been observed experimentally. The formation of the secondary vorticity has
been attributed to the unsteady separation of the wall boundary layer caused
by an adverse pressure gradient on the ground. The numerical results appear
to agree with this hypothesis. The calculated phase speed of the vortex rings

on the ground is lower than the experimental value obtained with an isolated

RSN DDy o

impinging jet. Since, in the present case, an infinite row of impinging jets
has been simulated, the presence of the adjacent jet causes the formation of a
fountain at the midplane between two jets. This fountain forms due to the
collision of two opposite wall jets on the ground and then climbs up and
impinges on the top plane. During vortex propagation on the ground, the vortex
ring i{s entrained into the fountain, resulting in the lifting of the vortex

ring from the ground. Thus, as the vortex ring continues to propagate to the
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outflow boundary, 1t is also lifted into the fountain causing it to twist and
finally break up. Due to the close pro. uaity of the ground to the jet exit
plane, the spread of the fountain on the top plane recirculates and shows signs
of reentrainment into the impinging jet. This results in an increase in the
spread of the jJet.

The formation of the fountain is a unique characteristic of multiple
impinging jets. A consequence of the impingement of the fountain on the top
wall 1s an increase of pressure on the plane resulting in an increased liftoff
effect for a VIOL aircraft. Since this is an important factor in the operation
of VTOL aircraft in ground effect, the dynamics of the formation and spreading
of the fountain were studied in more detail. Two impinging jets were simulated
such that the forcing frequency and phase of each can be varied independently.
At present, the effect of phase difference has been studied in detail. The
two jets were forced at the same frequency but with a phase difference of 7
and /2, respectively. The results indicate that the effect of the phase
difference 1s to stagger the vortex rings on the ground from the two Jets.

This causes the fountain to entrain vortex rings from each jet at a different
time. A detailed study of the wall jet collision zone indicates a complex

flow parcern caused by the phase difference. The fountain spread is more
uniform for the m phase difference case, and these simulations also showed a
complex merging pattern near the top wall. Another simulation with only one
jet forced was also carried out that indicates a complex pattern near the wall
jet collison zone. Due to the forcing of one jet, the vortices in it and hence
in its wall jet perturbs the steady wall jet of the other jet. This causes

the steady wall jet to undergo a disturbance at the same frequency of the
appearance of the vortex ring in the wall jet collision zone. The resulting
fountain thus again shows vortical motion from both the wall jets. However,
the fountain is no longer uniformly spreading up and shows a significant
flapping behavior. These simulations show quite clearly that the effect of a
phase difference between two impinging jets can significantly modify the motion
and structures in the fountain. It 18 expected that the effect of varying the
forcing frequency will also result in significant changes in the dynamics of
the fountain. A complete parametric analysis can be easily be carried out
provided enough resources are available to determine the effect of frequency

and phase differences on the spread of the fountain. This in turn will provide
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information on the effectiveness of the fountain to provide the liftoff effect.
For example, since realistic flow fields are usually highly turbulent, the
formation of large coherent structures due to the natural excitation of the
impinging jet may not be a highly periodic or energetic event. In this case,
the fountain spreads much more rapidly and has been observed in some experi-
ments to result in a weak liftoff effect. Thus, a possible solution to
increasing the 1iftoff effect will be to perturb the jet exit velocity profile

in a coherent manner so that large coherent structures are shed. This would

-
T A

result in a more coherent fountain and hence an increase in the 1iftoff effect.

Ny

&

However, to determine an optimum situation would require further study as

discussed above.

> .
o

R
B

The characateristics of the impinging jet flow due to azimuthal excitation

v el
P
.,

were also studied. The jet was again forced at the same frequency at St = 0.47.

2
A

The results indicate the characteristic formation of the helical structures

due to azimuthal excitation. The asymmetry in the fountain due to azimuthal

AR 1

forcing is also clearly indicated in the results. The vortical structures in

S x

the wall jet are less coherent as compared to the axisymmetric forcing studies.

g [
Ly N

The response of the fountain to various azimuthal excitations applied at the

exits of its neighboring Jets was investigated. The disturbances at the jet

L
"M

exits were applied with phase shifts of 0, w/2, and m. Fountain characteris-

s
L

tics were shared among the different cases in which the disturbances were

g it v
l."
:

x
o v,
R

applied in the clockwlse direction in both jets. A different set of charac-

teristics was shared by the cases in which the disturbances were applied in

the clockwise direction at one of the jet exits and in the counterclockwise

vy

direction at the other jet exit. In the case of clockwise-clockwise forcing,

S
4
PRI S g

""l

the fountain spreading towards the neighboring jets and its interaction with

.t

them is relatively strong. The fountain plane in this case is inclined to the

“ '|.']"I’.

plane that 18 normal to the plane of jet axes. The impinging effect on the

aircraft's undersurface in this case is relatively weak, indicating a weak

fountain 1iftoff effect. In the case of clockwise-counterclockwise forcing,

ehnn

the fountain 18 confined to a relatively narrow region near the midplane

between the jet axes. Its interaction with the neighboring jets is weak. The
{mpinging effect on the aircraft's undersurface 18 relatively strong.
‘inwever, 1t 18 not uniform in the direction normal to the plane of Jet axes.

T ltfrnff effect 18 relatively strong in the half of the fountain in which
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the disturbances in both jet exits are directed towards the fountain plane,

while they are relatively weak in the half in which these digturbances are

L e

directed away from the fountain plane. The observed weak lateral spreading
of the fountain is due to lateral flow restrictions, imposed by the existence
of a plane of symmetry through the fountain for the case of a 7 phase differ-
ence. For the general case with ¢ # 7, the weak lateral spreading is due to
the well-organized meshing of the vortical tubes in the fountain. These two
effects are also present in the case of axisymmetric forcing. Consequently,
strong similarities exist between the fountain characteristics in the cases of
axisymmetric forcing and azimuthal clockwise-counterclockwise forcing. These
effects, however, are not shared by the case of clockwise-clockwise forcing.
Some study of the impinging jet under random excitation has also been
performed. The random field was determined by prescribing the energy spectrum
and the rms value of the fluctuation and is imposed omn the jet profile as a
function of time. The results indicate that there is no clear formation of
vortex rings in the jet as in the coherent forcing studies. However, as the
jet impinges and spreads on the ground, there is a definite indication of
coherent vortical motion in the wall shear layer that is also coherent in the

spanwise direction. Simulations using both random forcing and a coherent

o forcing frequency were also performed, and the results indicate that the

': effect of the coherent frequency is to organize the motion in the impinging

LY

™ jet and also to form a more coherent vortex ring on the ground. This again

clearly indicates that coherent excitation of randomly forced impinging jets

R

T can possibly modify and organize the motion. This could result in a more

}: coherent fountain, thereby increasing the 1liftoff effect of the fountaln.
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Figure 11. Steady-state velocity profiles at t = 29.5 for H = 3D,
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Figure 12, Steady-state pressure variation and spreading of the impinging jet
and the fountain at t = 29.5 for H = 30, (Cont.)

TR-403/4-87 90




Pigure 13. Time sequence of the x—vorticity comtours for s forcing cycle at 8t = 0.47
in the y-s plane for % = 1.3D (comtour interval = 1.0).

L] ™R-403/4-87 91




d. x-vorticity contours in the vicinity of the ground plane in
the y~2 plane at x = O and t = 37.98 (contour interval = 0.5)

e. x = 0.51D plane at t = 37,98

Pigure 13. Time sequence of the x—vorticity contours for a forcing cycle at 8t = 0.47
in the y-z plane for B = 1.5D (contour interval = 1.0). (Cont.)
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a. z = 0.14D plane at t = 37,98 b. z = 0.14D plane at t = 39.02

Figure 15. z~vorticity contours for a forcing cycle at St = 0.47 in the
x-y plane for H = 1.5D (contour interval = 0,25).
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c. z =0,8D plane at t = 37.98 d. z = 0.8D plane at t = 39,02

Figure 15. z-vorticity contours for a forcing cycle at St = 0.47 in the
x~y plane for H = 1.5D (contour interval = 0.25). (Conmt.)
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Pigure 17. Distribution of the velocity, pressure gradient and vorticity fields
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Figure 19. v-velocity profiles as a function of z for forcing at St = 0.47.
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and vy = 1.5D for a forcing cycle
Pigure 19. v—velocity profiles as a fuaction of £ for forcing at 8t = 0.47,
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x-z plane at y = 0 as a function of 2

Spreading of the fmpinging jet and the foumtain for a forcing cycle
at St = 0,47,
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c. variation of the fountain half-velocity width in
the x-z plane at y = 0 as a function of z
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a. x = 0 plane at t = 50.64

c. x =0 plane at t = 52,73

Figure 23. Time sequence of the x~vorticity contours in the y-z plane for combined
forcing at S8t = 0.47 and 0.94 for H = 1.5D (contour interval = 1.0),
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a. x = 0 plane at t = 59.07

0.0-

b. x = O plane at t = 60.10

Pigure 26. Time sequence of the x-vorticity contours in the y-z plane for
forcing at St = 0.47 for H = 3D (contour interval = 1.0).
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:{ Figure 28, Variation of the velocity profiles as a function of z for a
forcing cycle at St = 0.47 for H = 3D,
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Figure 28, Variation of the velocity profiles as a function of £ for a
forcing cycle at St = 0.47 for H = 3D. (Cont.)
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Figure 29. Three—dimensional perspective of the vorticity surface for
combined forcing at St = 0.47 and 0.94 for H = 3D, Viev of
the impinging jet and the outflow at t = 50.64; |wl = 1.95.
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FPigure 30. Three-dimensional perspective of the vorticity surface for
combined forcing at 8t = 0.235 and 0.47 for H = 3D, View of
the impinging jet and the outflow at t = 50.64; |wl = 1.95.
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Figure 31. Time sequence of the x-vorticity im the y-z plane for forcing at
St = 0.235 and 0.47 for H = 3D (contour interval = 0.4).
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b. x = 0.51D plane at t = 59,06

Pigure 34. x-vorticity contours fn the y-z plane for combined forcing at
8t = 0.235 and 0.47 (contour interval = 0.5).
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Figure 36,
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a. z = 0,14D plane at t = 50,64

TR-403/4-87

z = 0.8D plane at t = 50.64

Variation of the x—vorticity contours in the x-y plane for combined
forcing at St = 0,235 and 0.47 (contour interval = 0.4).
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a. z = 0.14D plane at t = 50,64 b. 2z = 0.8D plane at t = 50,64 :

Variation of the y—vorticity contours in the x-y plane for combined

Figure 37.
forcing at St = 0.235 and 0.47 (contour interval = 0.4). .
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Figure 38. Spreading of the impinging jet and the fountain for combined
forcing at St = 0,235 and 0,47,
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b. vorticity level is lwl = 2.50

Figure 40. Three-dimensional perspective of the vorticity surface at t = 22.5
for two jets forced axisymmetrically at St = 0.47 with a phase
difference of T for B = 1,5D.

;
:
:
E
!

TR-403/4-87 127

RTINS SRR —.\'-'v.'»'-) N R R YL T, S S e o e .
e Y e D A T R St LS A
iR RS MR Pt



DA
Y

%

N

-
L
[
1
. [
{

R

e

»

AR
TR N |

a. view of the impinging jets
and the outflow at a level
lwl = 1.95

[« ]
==

=)
Q

M X o
y -A’: P (‘..a’.x"). -".

Figure 41, Three-dimensional per-
spective of the vorticity surface at
— t = 25,3 for two jets forced axisym—

- m metrically at St = 0.47 with a phase
H -e difference of w for H = 3D,
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a. x =0 plane at t = 22.3

b. x = 3D plane at t = 22,3

x-vorticity contours in the y-z plane for jets forced at St = 0.47
with a phase difference of 7 for H = 3D (contour interval = 0.6),
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c. y = 1.5D plane at t = 22.3,

Figure 43, y-vorticity contours in the x-z plane for jets forced at St = 0.47
with a phase difference of w for H = 3D (contour interval = 0.6
for a -= b; 0.3 for e).
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¢. 2z = 1,45D plane at t = 25.3

ﬁf} Figure 45. z-vorticity contours in the x-y plane for jets forced at St = 0.47
o~ vith a phase difference of n for H = 3D (contour fanterval = 0.2).
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FPigure 46. Three-dimensional perspective of the vorticity surface at t = 25.3
for two jets forced axisymmetrically at St = 0.47 with a phase
difference of 2.
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Figure 47. y-vorticity contours in the
" x-z plane for jets forced at St = 0,47
3 with a phase difference of 7/2 (contour
. interval = 0.6 for a = b; 0.4 for ¢ - e).
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y-vorticity contours in the z = 0.14D plane

Figure 48. Vorticity contours at t = 25.3 in the x—y plane for jets forced at
St = 0.47 with a phase difference of W2 (contour interval = 0.4),
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St = 0.47 with a phase difference at St = 0,47
of 1/2

Figure 53. Velocity vector diagram in the x-z plane.
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a. total vorticity level
lal = 3,25 4, t = 16.9
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b. azimutha) vorticity
level wg= 4.5 at
A t = 16.9
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Pligure 54, Three-dimensional Perspective of the vorticity surface for a jet forced
azimuthally at St = (.47 for = 1.5, The forcing level 14 0.1v,

TR-403/4-87 141

‘\\'~x-.--.~.'ﬁ-...
M A e PR A AL NN
A .‘.T-tx}mf'.h‘)‘.a'f.n'f‘i‘.\i\.':.':ffﬁf' ARSI

- -
LTS I RN




ST TR YR TR LT TOE T T T W O T WO W OW Rl Rl b Jiat S0 S 4 S0 b 202 0 a lal Al Rl b ih A Are @.s a0 aia s g

1

-

Y
o
'Y
3
s
",
?h
R ’
[}
N
N ph
. 3
. ;
1 :
'. ]
: ;
. N
. x
’ »
: )
1
D)
g
. “\J
i) ]
\'. g
- :
}- «
.
-
" d. y = -1.5D plane
K]
Figure 55. y-vorticity contours in the x-z plane for a jet forced azimuthally .
. at St = 0.47 for H = 1.5D at t = 16.9 (contour interval = 1.0), )

30

TR-403/4-87 142

¢

. +
]

(.J':rr iy W, ""(v’(‘f-{’f"((‘f’f/ - .« " y
: > >y y 3 R S A R R RN R DR SRS N ERRR ST SR TR W TN L N R 4
.-‘0 a RV MY Y, (LA M v nu ) 'A.h.! . - RNy ‘ )") S LA { WSRO ¢ ’(J'ihﬁ' '-'l‘ y ".t



e

T YT TR T TR VY PRY

‘N1°Q 81 13A3] $0}2103 9yl "6°EL = 3 I¥ QA = H 10] [9°0 = IS ¥
A1TeyInwize Padioj 313f ® 10J 20ejine £3}O}II0A Yl JO IATINAAE1ad [BUOTSUIMMIP-IAIYL  °9¢ 2and1y

'q 0°C = |Mm| 13aa1 £31}127310A jEBJOY °F

0°€ = 6m 1231 L3127330A JeUINUlZE

X
1814
—

T

¥
-87

TR-403/4




d. t = 23,91

Figure 57. Time sequence of the x-vorticity contours in the y-z plane at x = 0
for az{muthal forcing at St = 0.47 {(coantour interval = 0.7).
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a. x = -0.51D at t = 23.91

b, x = 0.51D at t = 23,91

Figure 58. x-vorticity contours in the y-z plane for azimuthal forcing at
St = 0.47 (contour interval = 0.7).
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Figure 63. Time sequence of the y-vorticity contours in the x-z plane at y ® 0.5D
for azimuthal forcing at St = 0.47 (contour interval = 0.6).
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